Taxonomy and Physiology of Phototrophic Purple Bacteria and Green Sulfur Bacteria

  • Johannes F. Imhoff
Part of the Advances in Photosynthesis and Respiration book series (AIPH, volume 2)


Anoxygenic phototrophic bacteria have always attracted scientists because of their coloration and ability to perform photosynthesis in the absence of air and without producing oxygen. Despite this common feature of these bacteria, variation in morphological, physiological and molecular properties, including molecular structures of the photosynthetic pigments and the photosynthetic apparatus, is great. This chapter will give a short introduction into the diversity of green sulfur and phototrophic purple bacteria, list some important properties of the species, and indicate important physiological features.


Cm. - Chromatium Ec. - Ectothiorhodospira Rb. - Rhodobacter Rp. - Rhodopseudomonas Rs. - Rhodospirillum 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Adkins JP, Madigan MT, Mandelco L, Woese CR and Tanner RS (1993) Arhodomonas aquaeolei gen. nov., sp. nov., an aerobic halophilic bacterium isolated from a subterranean brine. Intl J Syst Bacteriol 43: 514–520Google Scholar
  2. Albers H and Gottschalk G (1976) Acetate metabolism in Rhodopseudomonas gelatinosa and several other Rhodospirillaceae. Arch Microbiol 111: 45–49CrossRefPubMedGoogle Scholar
  3. Akiba T, Usami R and Horikoshi K (1983) Rhodopseudomonas rutila, a new species of nonsulfur purple photosynthetic bacteria. Intl J Syst Bacteriol 33: 551–556Google Scholar
  4. Ambler RP, Daniel M, Hermoso J, Meyer TE, Bartsch RG and Kamen MD (1979) Cytochrome c2 sequence variations among the recognised species of purple nonsulphur photosynthetic bacteria. Nature 278: 659–660PubMedGoogle Scholar
  5. Amesz J and Knaff DB (1988) Molecular mechanism of bacterial photosynthesis. In: Zehnder AJB (ed) Biology of Anaerobic Microorganisms, pp 113–178. Wiley, ChichesterGoogle Scholar
  6. Bavendamm W (1924) Die farblosen und roten Schwefelbakterien des Süβ-und Salzwassers. Fischer Verlag, JenaGoogle Scholar
  7. Beatty JT and Gest H (1981) Biosynthetic and bioenergetic functions of citric acid cycle reactions in Rhodopseudomonas capsulata. J Bacteriol 148: 584–593PubMedGoogle Scholar
  8. Beer-Romero P and Gest H (1987) Heliobacillus mobilis, a peritrichously flagellated anoxyphototroph containing bacteriochlorophyll g. FEMS Microbiol Lett 41: 109–114CrossRefGoogle Scholar
  9. Beer-Romero P, Favinger JL, and Gest H (1988) Distinctive properties of bacilliform photosynthetic heliobacteria. FEMS Microbiol Lett 49: 451–454CrossRefGoogle Scholar
  10. Brockmann H Jr and Lipinski A (1983) Bacteriochlorophyll g. A new bacteriochlorophyll from Heliobacterium chlorum. Arch Microbiol 136: 17–19CrossRefGoogle Scholar
  11. Buchanan BB, Evans MCW and Arnon DI (1967) Ferredoxin-dependent carbon assimilation in Rhodospirillum rubrum. Arch Microbiol 59: 32–40Google Scholar
  12. Burgess JG, Kawaguchi R, Yamada A and Matsunaga T (1994) Rhodobacter marinus sp. nov.: A new marine hydrogen producing photosynthetic bacterium which is sensitive to oxygen and sulphide. Microbiology 140: 965–970Google Scholar
  13. Caumette P, Baulaigue R and Matheron R (1988) Characterization of Chromatium salexigens sp. nov., a halophilic Chromatiaceae isolated from Mediterranean salinas. Syst Appl Microbiol 10: 284–292Google Scholar
  14. Caumette P, Baulaigue R and Matheron R (1991) Thiocapsa halophila sp. nov., a new halophilic phototrophic purple sulfur bacterium. Arch Microbiol 155: 170–176CrossRefGoogle Scholar
  15. Cohen-Bazire G, Pfennig N, and Kunizawa R (1964) The fine structure of green bacteria. J Cell Biol 22: 207–225CrossRefPubMedGoogle Scholar
  16. Dickerson RE (1980) Evolution and gene transfer in purple photosynthetic bacteria. Nature 283: 210–212CrossRefPubMedGoogle Scholar
  17. Drews G (1981) Rhodospirillum salexigens, spec. nov., an obligatory halophilic phototrophic bacterium. Arch Microbiol 130: 325–327CrossRefGoogle Scholar
  18. Eckersley K and Dow CS (1980) Rhodopseudomonas blastica sp. nov.: A member of the Rhodospirillaceae. J Gen Microbiol 119: 465–473Google Scholar
  19. Eichler B and Pfennig N (1986) Characterization of a new platelet-forming purple sulfur bacterium, Amoebobacter pedioformis sp. nov. Arch Microbiol 146: 295–300CrossRefGoogle Scholar
  20. Eichler B and Pfennig N (1988) A new purple sulfur bacterium from stratified fresh-water lakes, Amoebobacter purpureus sp. nov. Arch Microbiol 149: 395–100CrossRefGoogle Scholar
  21. Evans MCW, Buchanan BB and Arnon DI (1966) A new ferredoxin-dependent carbon reduction cycle in a photosynthetic bacterium. Proc Natl Acad Sci USA 55: 928–934PubMedGoogle Scholar
  22. Evans WR, Fleischmann DE, Calvert HE, Pyati PV, Alter GM and Rao NSS (1990) Bacteriochlorophyll and photosynthetic reaction centers in Rhizobium strain BTAi 1. Appl Environ Microbiol 56: 3445–3449PubMedGoogle Scholar
  23. Favinger J, Stadtwald R and Gest H (1989) Rhodospirillum centenum, sp. nov., a thermotolerant cyst-forming photosynthetic bacterium. Antonie van Leeuwenhoek 55: 291–296CrossRefPubMedGoogle Scholar
  24. Ferguson SJ, Jackson JB and McEwan AG (1987) Anaerobic respiration in the Rhodospirillaceae: characterisation of pathways and evaluation of roles in redox balancing during photosynthesis. FEMS Microbiol Rev 46: 117–143Google Scholar
  25. Fowler VJ, Pfennig N, Schubert W and Stackebrandt E (1984) Towards a phylogeny of phototrophic purple sulfur bacteria—16S rRNA oligonucleotide cataloguing of 11 species of Chromatiaceae. Arch Microbiol 139: 382–387CrossRefGoogle Scholar
  26. Fuchs G, Stupperich E and Jaenchen R (1980a) Autotrophic CO2 fixation in Chlorobium limicola. Evidence against the operation of the Calvin cycle in growing cells. Arch Microbiol 128: 56–63Google Scholar
  27. Fuchs G, Stupperich E and Eden G (1980b) Autotrophic CO2 fixation in Chlorobium limicola. Evidence for the operation of a reductive tricarboxylic acid cycle in growing cells. Arch Microbiol 128: 64–71Google Scholar
  28. Gerola PD and Olson JM (1986) A new bacteriochlorophyll α-protein complex associated with chlorosomes of green sulfur bacteria. Biochim Biophys Acta 848: 69–76PubMedGoogle Scholar
  29. Gest H and Favinger JF (1983) Heliobacterium chlorum, an anoxygenic brownish-green bacterium containing a ‘new’ form of bacteriochlorophyll. Arch Microbiol 136: 11–16CrossRefGoogle Scholar
  30. Gibson J, Stackebrandt E, Zablen LB, Gupta R and Woese CR (1979) A phylogenetic analysis of the purple photosynthetic bacteria. Curr Microbiol 3: 59–64Google Scholar
  31. Gibson J, Pfennig N and Waterbury JB (1984) Chloroherpeton thalassium gen. nov. et spec. nov., a nonfilamentous, flexing, and gliding green sulfur bacterium. Arch Microbiol 138: 96–101CrossRefPubMedGoogle Scholar
  32. Gibson J, Ludwig W, Stackebrandt E and Woese CR (1985) The phylogeny of the green photosynthetic bacteria: Absence of a close relationship between Chlorobium and Chloroflexus. Syst Appl Microbiol 6: 152–156Google Scholar
  33. Gloe A and Risch N (1978) Bacteriochlorophyll cs, a new bacteriochlorophyll from Chloroflexus aurantiacus. Arch Microbiol 118: 153–156CrossRefPubMedGoogle Scholar
  34. Gloe A, Pfennig N, Brockmann H Jr, and Trowitsch W (1975) A new bacteriochlorophyll from brown-colored Chlorobiaceae. Arch Microbiol 102: 103–109CrossRefPubMedGoogle Scholar
  35. Gorlenko VM (1974) Oxidation of thiosulphate by Amoebobacter roseus in darkness under microaerobic conditions. Microbiologiya 43: 729–731 (in Russian)Google Scholar
  36. Gorlenko VM and Lebedeva EV (1971) New green sulphur bacteria with apophyses. Microbiologiya 40: 1035–1039 (in Russian)Google Scholar
  37. Gorlenko VM, Krasilnikova EN, Kikina OG and Tatarinova N Ju (1979) The new motile purple sulphur bacteria Lamprobacter modestohalophilus nov. gen., nov. spec. with gas vacuoles. Biol Bull Acad Sci USSR 6: 631–642 (in Russian)Google Scholar
  38. Hansen TA (1974) Sulfide als electronendonor voor Rhodospirillaceae. Doctoral thesis, University of Groningen, The NetherlandsGoogle Scholar
  39. Hansen TA and Imhoff JF (1985) Rhodobacter veldkampii, a new species of phototrophic purple nonsulfur bacteria. Intl J Syst Bacteriol 35: 115–116Google Scholar
  40. Hansen TA and Van Gemerden H (1972) Sulfide utilization by purple nonsulfur bacteria. Arch Mikrobiol 86: 49–56CrossRefPubMedGoogle Scholar
  41. Hansen TA and Veldkamp H (1973) Rhodopseudomonas sulfidophila nov. spec., a new species of the purple nonsulfur bacteria. Arch Mikrobiol 92: 45–58CrossRefPubMedGoogle Scholar
  42. Hansen TA, Sepers ABJ and Van Gemerden H (1975) A new purple bacterium that oxidizes sulflde to extracellular sulfur and sulfate. Plant Soil 43: 17–27CrossRefGoogle Scholar
  43. Harashima K, Hayashi J-I, Ikari T and Shiba T (1980) O2-stimulated synthesis of bacteriochlorophyll and carotenoids in marine bacteria. Plant Cell Physiol 21: 1283–1294Google Scholar
  44. Hiraishi A and Kitamura H (1984) Distribution of phototrophic purple nonsulfur bacteria in activated sludge systems and other aquatic environments. Bull Jpn Soc Sci Fish 50: 1929–1937Google Scholar
  45. Hiraishi A and Ueda Y (1994a) Intrageneric structure of the genus Rhodobacter. Transfer of Rhodobacter sulfidophilus and related marine species to the genus Rhodovulum gen. nov. Intl J Syst Bacteriol 44: 15–23Google Scholar
  46. Hiraishi A and Ueda Y (1994b) Rhodoplanes gen. nov., a new genus of phototrophic bacteria including Rhodopseudomonas rosea as Rhodoplanes roseus comb. nov. and Rhodoplanes elegans sp. nov. Intl J Syst Bacteriol 44: 665–673Google Scholar
  47. Hiraishi A, Hoshino Y and Satoh T (1991) Rhodoferaxfermentans gen. nov., sp. nov., a phototrophic purple nonsulfur bacterium previously referred to as the ‘Rhodocyclus gelatinosus-like’ group. Arch Microbiol 155: 330–336CrossRefGoogle Scholar
  48. Hiraishi A, Santos TS, Sugiyama J and Komagata K (1992) Rhodopseudomonas rutila is a later subjective synonym of Rhodopseudomonas palustris. Intl J Syst Bacteriol 42: 186–188Google Scholar
  49. Iba K, Takamiya K-I, Toh Y and Nishimura M (1988) Roles of bacteriochlorophyll and protein complexes in an aerobic photosynthetic bacterium, Erythrobacter sp. strain OCH 114. J Bacteriol 170: 1843–1847PubMedGoogle Scholar
  50. Imhoff JF (1982) Taxonomic and phylogenetic implications of lipid and quinone compositions in phototrophic micro-organisms. In: Wintermans JFGM and Kuiper PJC (eds) Biochemistry and Metabolism of Plant Lipids, pp 541–544. Elsevier Biomedical Press, AmsterdamGoogle Scholar
  51. Imhoff JF (1983) Rhodopseudomonas marina sp. nov., a new marine phototrophic purple bacterium. Syst Appl Microbiol 4: 512–521Google Scholar
  52. Imhoff JF (1984a) Reassignment of the genus Ectothiorhodospira Pelsh 1936 to a new family Ectothiorhodospiraceae fam. nov., and emended description of the Chromatiaceae Bavendamm 1924. Intl J Syst Bacteriol 34: 338–339Google Scholar
  53. Imhoff JF (1984b) Quinones of phototrophic purple bacteria. FEMS Microbiol Lett 25: 85–89CrossRefGoogle Scholar
  54. Imhoff JF (1988) Lipids, fatty acids and quinones in taxonomy and phylogeny of anoxygenic phototrophic bacteria. In: Olson JM, Ormerod JG, Amesz J, Stackebrandt E and Trüper HG (eds) Green Photosynthetic Bacteria, pp 223–232. Plenum Press, New YorkGoogle Scholar
  55. Imhoff JF (1989) Genus Ectothiorhodospira. In: Staley JT, Bryant MP, Pfennig N and Holt JC (eds) Bergey’s Manual of Systematic Bacteriology, Volume 3, pp 1654–1658. Williams and Wilkins, BaltimoreGoogle Scholar
  56. Imhoff JF (1991) Polar lipids and fatty acids in the genus Rhodobacter. System Appl Microbiol 14: 228–234Google Scholar
  57. Imhoff JF and Trüper HG (1981) Ectothiorhodospira abdelmalekii sp. nov., a new halophilic and alkaliphilic phototrophic bacterium. Zentralbl Bakteriol Hyg I Abt Orig C2: 228–234Google Scholar
  58. Imhoff JF and Trüper HG (1989) The purple nonsulfur bacteria. In: Staley JT, Bryant MP, Pfennig N and Holt JC (eds) Bergey’s Manual of Systematic Bacteriology, Vol 3, pp 1658–1661. Williams and Wilkins, BaltimoreGoogle Scholar
  59. Imhoff JF, Tindall B, Grant WD and Trüper HG (1981) Ectothiorhodospira vacuolata sp. nov., a new phototrophic bacterium from soda lakes. Arch Microbiol 130: 238–242Google Scholar
  60. Imhoff JF, Kushner DJ, Kushwaha SC and Kates M (1982) Polar lipids in phototrophic bacteria of the Rhodospirillaceae and Chromatiaceae families. J Bacteriol 150: 1192–1201PubMedGoogle Scholar
  61. Imhoff JF, Trüper HG and Pfennig N (1984) Rearrangement of the species and genera of the phototrophic ‘purple nonsulfur bacteria’. Intl J Syst Bacteriol 34: 340–343Google Scholar
  62. Ivanovsky RN, Sinton NV and Kondratieva EN (1980) ATP-linked citrate lyase activity in the green sulfur bacterium Chlorobium limicola forma thiosulfatophilum. Arch Microbiol 128: 239–241CrossRefGoogle Scholar
  63. Janssen PH and Harfoot CG (1991) Rhodopseudomonas rosea sp. nov., a new purple nonsulfur bacterium. Intl J Syst Bacteriol 41: 26–30Google Scholar
  64. Kämpf C and Pfennig N (1980) Capacity of Chromatiaceae for chemotrophic growth. Specific respiration rates of Thiocystis violacea and Chromatium vinosum. Arch Microbiol 127: 125–135Google Scholar
  65. Kämpf C and Pfennig N (1986) Isolation and characterization of some chemoautotrophic Chromatiaceae. J Basic Microbiol 9: 507–515Google Scholar
  66. Kawasaki H, Hoshino Y, Kuraishi H and Yamasoto K (1992) Rhodocista centenaria gen. nov., sp. nov., a cyst-forming anoxygenic photosynthetic bacterium and its phylogenetic position in the Proteobacteria alpha group. J Gen Appl Microbiol 38: 541–551Google Scholar
  67. Kawasaki H, Hoshino Y, Hirata A and Yamasato K (1993) Is intracytoplasmic membrane structure a generic criterion? It does not coincide with phylogenetic interrelationships among phototrophic purple nonsulfur bacteria. Arch Microbiol 160: 358–362CrossRefPubMedGoogle Scholar
  68. Kompantseva EJ (1985) Rhodobacter euryhalinus sp. nov., a new halophilic purple bacterial species. Mikrobiologiya 54: 974–982 (in Russian)Google Scholar
  69. Kompantseva EJ (1989) A new species of budding purple bacterium: Rhodopseudomonas julia sp. nov. Microbiologiya 58: 254–259Google Scholar
  70. Kompantseva EJ and Gorlenko VM (1984) A new species of moderately halophilic purple bacterium Rhodospirillum mediosalinum sp. nov. Microbiologiya 53: 775–781Google Scholar
  71. Kondratieva EN (1979) Interrelation between modes of carbon assimilation and energy production in phototrophic purple and green bacteria. In: Quale JR (ed) Microbial Biochemistry, Vol 21, pp 117–175. University Park Press, Baltimore, MDGoogle Scholar
  72. Kondratieva EN, Zhukov VG, Ivanovsky RN, Petushkova YP and Monosov EZ (1976) The capacity of phototrophic sulfur bacterium Thiocapsa roseopersicina for chemosynthesis. Arch Microbiol 108: 287–292CrossRefPubMedGoogle Scholar
  73. Kristjansen O (1988) Large Chromatiaceae: Part-time lithoautotrophs? Abstr VI Int Symp Photosynthetic Prokaryotes, Nordwijkerhout, Netherlands, p 162Google Scholar
  74. Liaaen-Jensen S (1965) Bacterial carotenoids. XVIII. Arylcarotenes from Phaeobium. Acta Chem Scand 19: 1025–1030Google Scholar
  75. Mack EE, Mandelco L, Woese CR, and Madigan MT (1993) Rhodospirillum sodomense, sp. nov, a Dead Sea Rhodospirillum species. Arch Microbiol 160: 363–371CrossRefGoogle Scholar
  76. Madigan MT (1986) Chromatium tepidum sp. nov, a thermophilic photosynthetic bacterium of the family Chromatiaceae. Intl J Syst Bacteriol 36: 222–227Google Scholar
  77. Madigan, MT and Gest H (1979) Growth of the photosynthetic bacterium ücapsulata chemoautotrophically in darkness with H2 as the energy source. J Bacteriol 137: 524530Google Scholar
  78. Mayer H (1984) Significance of lipopolysaccharide structure for taxonomy and phylogenetical relatedness of Gram-negative bacteria. In: Haber E (ed) The Cell Membrane, pp 71–83. Plenum Press, New YorkGoogle Scholar
  79. Mayer H, Bock E and Weckesser J (1983) 2,3-Diamino-2,3-dideoxyglucose containing lipid A in the Nitrobacter strain X14 FEMS Microbiol Lett 17: 93–96CrossRefGoogle Scholar
  80. Meißner J, Krauss JH, Jürgens UJ and Weckesser J (1988a) Absence of a characteristic cell wall lipopolysaccharide in the phototrophic bacterium Chloroflexus aurantiacus. J Bacteriol 170: 3213–3216PubMedGoogle Scholar
  81. Meißner J, Pfennig N, Krauss JH, Mayer H and Weckesser J (1988b) Lipopolysaccharides of Thiocystis violacea, Thiocapsa pfennigii and Chromatium tepidum, species of the family Chromatiaceae. J Bacteriol 170: 3217–3222PubMedGoogle Scholar
  82. Meißner J, Borowiak D, Fischer U, Weckesser J (1988c) The lipopolysaccharide of the phototrophic bacterium Ectothiorhodospira vacuolata. Arch Microbiol 149: 245–248CrossRefGoogle Scholar
  83. Michalski TJ, Hunt JE, Bowman MK, Smith U, Bardeen K, Gest H, Norris JR and Katz JJ (1987) Bacteriophytin g: Properties and some speculations on a possible primary role for bacteriochlorophylls b and g in the biosynthesis of chlorophylls. Proc Natl Acad Sci USA 84: 2590–2594Google Scholar
  84. Molisch H (1907) Die Purpurbakterien nach neuen Untersuchungen. G. Fischer, JenaGoogle Scholar
  85. Neutzling O, Imhoff JF and Trüper HG (1984) Rhodopseudomonas adriatica sp. nov., a new species of the Rhodospirillaceae, dependent on reduced sulfur compounds. Arch Microbiol 137: 256–261CrossRefGoogle Scholar
  86. Nishimura Y, Shimizu M and Lizuka H (1981) Bacteriochlorophyll formation in radiation-resistant Pseudomonas radiora. J Gen Appl Microbiol 27: 427–430Google Scholar
  87. Nissen H and Dundas ID (1984) Rhodospirillum salinarum sp. nov., a halophilic photosynthetic bacterium from a Portuguese saltern. Arch Microbiol 138: 251–256CrossRefGoogle Scholar
  88. Oren A, Kessel M and Stackebrandt E (1989) Ectothiorhodospira marismortui sp. nov., an obligatory anaerobic, moderately halophilic purple sulfur bacterium from a hypersaline sulfur spring on the shore of the Dead Sea. Arch Microbiol 151: 524–529CrossRefGoogle Scholar
  89. Overmann J and Pfennig N (1989) Pelodictyon phaeoclathratiforme sp. nov., a new brown-colored member of the Chlorobiaceae forming net-like colonies. Arch Microbiol 152: 401–406CrossRefGoogle Scholar
  90. Overmann J, Fischer U and Pfennig N (1992) A new purple sulfur bacterium from saline littoral sediments, Thiorhodovibrio winogradskyi gen. nov. and sp. nov. Arch Microbiol 157: 329–335CrossRefGoogle Scholar
  91. Pelsh AD (1937) Photosynthetic sulfur bacteria of the eastern reservoir of Lake Sakskoe. Mikrobiologiya 6: 1090–1100Google Scholar
  92. Pfennig N (1978) General physiology and ecology of photosynthetic bacteria. In: Clayton RE and Sistrom WR (eds) The Photosynthetic Bacteria, pp 3–18. Plenum Press, New YorkGoogle Scholar
  93. Pfennig N (1989a) Green sulfur bacteria. In: Staley JT, Bryant MP, Pfennig N and Holt JC (eds) Bergey’s Manual of Systematic Bacteriology, Volume 3, pp 1682–1683. Williams and Wilkins, BaltimoreGoogle Scholar
  94. Pfennig N (1989b) Multicellular filamentous green bacteria. In: Staley JT, Bryant MP, Pfennig N and Holt JC (eds) Bergey’s Manual of Systematic Bacteriology, Vol 3, pp 1697. Williams and Wilkins, BaltimoreGoogle Scholar
  95. Pfennig N and Trüper HG (1971) Higher taxa of the phototrophic bacteria. Intl J Syst Bacteriol 21: 17–18Google Scholar
  96. Pfennig N and Trüper HG (1974) The phototrophic bacteria. In: Buchanan RE and Gibbons NE (eds) Bergey’s Manual of Determinative Bacteriology, pp 24–64. Williams and Wilkins, BaltimoreGoogle Scholar
  97. Sato K (1978) Bacteriochlorophyll formation by facultative methylotrophs, Protaminobacter ruber and Pseudomonas AM 1. FEBS Lett 85: 207–210PubMedGoogle Scholar
  98. Schmidt K (1978) Biosynthesis of carotenoids. In: Clayton RK and Sistrom WR (eds) The Photosynthetic Bacteria, pp 729–750. Plenum Press, New YorkGoogle Scholar
  99. Schmidt K and Bowien B (1983) Notes on the description of Rhodopseudomonas blastica. Arch Microbiol 136: 242CrossRefGoogle Scholar
  100. Seewaldt E, Schleifer K-H, Bock E and Stackebrandt E (1982) The close phylogenetic relationship of Nitrobacter and Rhodopseudomonas palustris. Arch Microbiol 131: 287–290CrossRefGoogle Scholar
  101. Shiba T (1984) Utilization of light energy by the strictly aerobic bacterium Erythrobacter sp. OCH 114. J Gen Appl Microbiol 30: 239–244Google Scholar
  102. Shiba T (1991) Roseobacter litoralis gen. nov., sp. nov., and Roseobacter denitrificans sp. nov., aerobic pink-pigmented bacteria which contain bacteriochlorophyll a. Syst Appl Microbiol 14: 140–145Google Scholar
  103. Shiba T, Simidu U and Taga N (1979) Distribution of aerobic bacteria which contain bacteriochlorophyll a. Appl Environ Microbiol 38: 43–45PubMedGoogle Scholar
  104. Shimada K, Hayashi H and Tasumi M (1985) Bacteriochlorophyll-protein complexes of aerobic bacteria, Erythrobacter longus and Erythrobacter species OCH 114. Arch Microbiol 143: 244–247CrossRefGoogle Scholar
  105. Siefert E and Pfennig N (1979) Chemoautotrophic growth of Rhodopseulomonas species with hydrogen and chemotrophic utilization of methanol and formate. Arch Microbiol 122: 177–182CrossRefGoogle Scholar
  106. Stackebrandt E and Woese CR (1981) The evolution of procaryotes. In: Carlile MJ, Collins JR, and Moseley BEB (eds) Molecular and Cellular Aspects of Microbial Evolution, pp 1–31. Cambridge University Press, CambridgeGoogle Scholar
  107. Stackebrandt E, Fowler VJ, Schubert W and Imhoff JF (1984) Towards a phylogeny of phototrophic purple bacteria — The genus Ectothiorhodospira. Arch Microbiol 137: 366–370CrossRefGoogle Scholar
  108. Stackebrandt E, Murray RGE and Trüper HG (1988) Proteobacteria classis nov., a name for the phylogenetic taxon that includes the ‘purple bacteria and their relatives.’ Intl J Syst Bacteriol 38: 321–325Google Scholar
  109. Stadtwald-Demchick R, Turner FR and Gest H (1990a) Physiological properties of the thermotolerant photosynthetic bacterium, Rhodospirillum centenum. FEMS Microbiol Lett 67: 139–144CrossRefGoogle Scholar
  110. Stadtwald-Demchick, Turner FR and Gest H (1990b) Rhodopseudomonas cryptolactis, sp. nov., a new thermotolerant species of budding phototrophic purple bacteria. FEMS Microbiology Letters 71: 117–122CrossRefGoogle Scholar
  111. Staehelin LA, Fuller RC and Drews G (1978) Visualization of the supramolecular architecture of chlorosomes (chlorobium vesicles) in freeze-fractured cells of Chloroflexus aurantiacus. Arch Microbiol 119: 269–277CrossRefGoogle Scholar
  112. Staehelin LA, Golecki JR and Drews G (1980) Supramolecular organization of chlorosomes (chlorobium vesicles) and of their membrane attachment sites in Chlorobium limicola. Biochim Biophys Acta 589: 30–45PubMedGoogle Scholar
  113. Steiner R, Schàfer W, Blos I, Wieschoff H and Scheer H (1981) 2, 10-Phytadienol as esterifying alcohol of bacteriochlorophyll b from Ectothiorhodospira halochloris. Z Naturforsch 36c: 417–420Google Scholar
  114. Trüper HG (1968) Ectothiorhodospira mobilis Pelsh, a photosynthetic sulfur bacterium depositing sulfur outside the cells. J Bacteriol 95: 1910–1920PubMedGoogle Scholar
  115. Trüper HG (1989) Genus Erythrobacter. In: Staley JT, Bryant MP, Pfennig N and Holt JG (eds) Bergey’s Manual of Systematic Bacteriology, Vol 3, pp 1708–1709. Williams and Wilkins, BaltimoreGoogle Scholar
  116. Trüper HG and Pfennig N (1981) Characterization and identification of the anoxygenic phototrophic bacteria. In: Starr MP, Stolp H, Trüper HG, Balows A and Schlegel HG (eds) The Prokaryotes, pp 299–312. Springer Verlag, New YorkGoogle Scholar
  117. Van Gemerden H (1968) On the ATP generation by Chromatium in darkness. Arch Microbiol 64: 118–124Google Scholar
  118. Wahlund TM, Woese CR, Castenholz RW and Madigan MT (1991) A thermophilic green sulfur bacterium from New Zealand hot springs, Chlorobium tepidum sp. nov. Arch Microbiol 156: 8190CrossRefGoogle Scholar
  119. Weckesser J, Drews G, Mayer H and Fromme I (1974) Lipopolysaccharide aus Rhodospirillaceae, Zusammensetzung und taxonomische Relevanz. Zentralbl Bakteriol Hyg I Abt Orig A 228: 193–198Google Scholar
  120. Weckesser J, Drews G and Mayer H (1979) Lipopolysaccharides of photosynthetic prokaryotes. Ann Rev Microbiol 33: 215–239Google Scholar
  121. Widdel F, Schnell S, Heising S, Ehrenreich A, Assmus B and Schink B (1993) Ferrous iron oxidation by anoxygenic phototrophic bacteria. Nature 362: 834–836CrossRefGoogle Scholar
  122. Willems A, Gillis M and de Ley J (1991) Transfer of Rhodocyclus gelatinosus to Rubrivivax gelatinosus gen. nov., comb nov., and phylogenetic relationships with Leptothrix, Sphaerotilus natans, Pseudomonas saccharophila, and Alcaligenes latus. Intl J Syst Bacteriol 41: 65–73Google Scholar
  123. Woese CR (1987) Bacterial evolution. Microbiol Rev 51: 221–271PubMedGoogle Scholar
  124. Woese CR, Stackebrandt E, Weisburg WG, Paster BJ, Madigan MT, Fowler VJ, Hahn CM, Blanz P, Gupta R, Nealson KH and Fox GE (1984a) The phylogeny of purple bacteria: The alpha subdivision. Syst Appl Microbiol 5: 315–326PubMedGoogle Scholar
  125. Woese CR, Weisburg WG, Paster BJ, Hahn CM, Tanner RS, Krieg NR, Koops H-P, Harms H and Stackebrandt E (1984b) The phylogeny of purple bacteria: The beta subdivision. Syst Appl Microbiol 5: 327–336Google Scholar
  126. Woese CR, Stackebrandt E, Macke TJ and Fox GE (1985a) The phylogenetic definition of the major eubacterial taxa. Syst Appl Microbiol 6: 143–151PubMedGoogle Scholar
  127. Woese CR, Weisburg WG, Hahn CM, Paster BJ, Zablen LB, Lewis BJ, Macke TJ, Ludwig W and Stackebrandt E (1985b) The phylogeny of purple bacteria: The gamma subdivision. Syst Appl Microbiol 6: 25–33Google Scholar
  128. Woese CR, Debrunner-Vossbrink BA, Oyaizu H, Stackebrandt E and Ludwig W (1985c) Gram positive bacteria: Possible photosynthetic ancestry. Science 229: 762–765PubMedGoogle Scholar
  129. Zablen L and Woese CR (1975) Procaryote phylogeny IV: Concerning the phylogenetic status of a photosynthetic bacterium. J Mol Evol 5: 25–34CrossRefPubMedGoogle Scholar
  130. Zahr M, Fobel B, Meyer H, Imhoff JF, Campos V P and Weckesser J (1992) Chemical composition of the lipopolysaccharides of Ectothiorhodospira shaposhnikovii, Ectothiorhodospira mobilis, and Ectothiorhodospira halophila. Arch Microbiol 157: 499–504Google Scholar

Copyright information

© Kluwer Academic Publishers 1995

Authors and Affiliations

  • Johannes F. Imhoff
    • 1
  1. 1.Institut für Meereskunde an der Universität KielKielGermany

Personalised recommendations