Skip to main content

Optical, Electronic, and Dynamic Properties of Metal Nanomaterials

  • Chapter
Self-Assembled Nanostructures

Part of the book series: Nanostructure Science and Technology ((NST))

  • 540 Accesses

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. V. Vijayakrishnan, A. Chainani, D. D. Sarma, and C. N. R. Rao, Metal insulator transitions in metal clusters—a high-energy spectroscopy study of Pd and Ag clusters, J. Phy.i. Chem. 96, 8679–8682 (1992).

    CAS  Google Scholar 

  2. D. R. Huffman, in: Optical Effects Associated with Small Particles, edited by P. W. Barber and R. K. Chang (World Scientific, Singapore, 1988), pp. 279–324.

    Google Scholar 

  3. U. Kreibig, Electronic properties of small silver particles: the optical constants and their temperature dependence, J. Phys. F (Metal Phys.) 4, 999–1014 (1974).

    CAS  Google Scholar 

  4. C. P. Collier, R. J. Saykally, J. J. Shiang, S. E. Henrichs, and J. R. Heath, Reversible tuning of silver quantum dot monolayers through the metal-insulator transition, Science 277, 1978–1981 (1997).

    Article  CAS  Google Scholar 

  5. G. Mie, Contribution to optical properties of turbulent media, specifically colloidal metal dispersions, Annalen der Physik 25, 377–445 (1908).

    CAS  Google Scholar 

  6. W. P. Halperin, Quantum size effects in metal particles, Rev. Mod. Phys. 58, 533–606 (1986).

    Article  CAS  Google Scholar 

  7. L. Genzel, T. P. Martin, and U. Kreibig, Dielectric function and plasma resonances of small metal particles, Z. Physik B 21, 339–346 (1975).

    Article  CAS  Google Scholar 

  8. U. Kreibig and M. Vollmer, Optical Properties of Metal Clusters (Springer, Berlin, 1995).

    Google Scholar 

  9. M. M. Alvarez, J. T. Khoury, T. G. Schaaff, M. N. Shafigullin, I. Vezmar, and R. L. Whetten, Optical absorption spectra of nanocrystal gold molecules, J. Phys. Chem. B 101, 3706–3712 (1997).

    Article  CAS  Google Scholar 

  10. J. H. Hodak, A. Henglein, and G. V. Hartland, Photophysics of nanometer sized metal particles: electron-phonon coupling and coherent excitation of breathing vibrational modes, J. Phys. Chem. B 104, 9954–9965 (2000).

    CAS  Google Scholar 

  11. A. Taleb, C. Petit, and M. P. Pileni, Optical properties of self-assembled 2D and 3D superlattices of silver nanoparticles, J. Phys. Chem. B 102, 2214–2220 (1998).

    Article  CAS  Google Scholar 

  12. P. B. Johnson and R. W. Christy, Optical constants of the noble metals, Phys. Rev. B: Solid State 6, 4370–4379 (1972).

    CAS  Google Scholar 

  13. N. W. Ashcroft and N. D. Mermin, Solid State Physics (Saunders College, Philadelphia, 1976).

    Google Scholar 

  14. D. M. Wood and N. W. Ashcroft, Quantum size effects in the optical properties of small metallic particles, Phys. Rev. B: Condens. Matter 25, 6255–6274 (1982).

    CAS  Google Scholar 

  15. B. M. I. van der Zande, G. J. M. Koper, and H. N. W. Lekkerkerker, Alignment of rod-shaped gold particles by electric fields, J. Phys. Chem. B 103, 5754–5760 (1999).

    Google Scholar 

  16. B. M. I. van der Zande, L. Pages, R. A. M. Hikmet, and A. van Blaaderen, Optical properties of aligned rod-shaped gold particles dispersed in poly(vinyl alcohol) films, J. Phys. Chem. B 103, 5761–5767 (1999).

    Google Scholar 

  17. M. B. Mohamed, V. Volkov, S. Link, and M. A. El-Sayed, The ‘lightning’ gold nanorods: fluorescence enhancement of over a million compared to the gold metal, Chem. Phys. Lett. 317, 517–523 (2000).

    Article  CAS  Google Scholar 

  18. M. A. El-Sayed, Some interesting properties of metals confined in time and nanometer space of different shapes, Acc. Chem. Res. 34, 257–264 (2001).

    Google Scholar 

  19. A. Taleb, V. Russicr, A. Courty, and M. P. Pileni, Collective optical properties of silver nanoparticles organized in two-dimensional superlattices, Phys. Rev. B: Condens. Matter 59, 13350–13358 (1999).

    CAS  Google Scholar 

  20. Y. Y. Yu, S. S. Chang, C. L. Lee, and C. R. C. Wang, Gold nanorods: electrochemical synthesis and optical properties, J. Phys. Chem. B 101, 6661–6664 (1997).

    CAS  Google Scholar 

  21. A. N. Shipway, M. Lahav, R. Gabai, and I. Willner, Investigations into the electrostatically induced aggregation of Au nanoparticles, Langmuir 16, 8789–8795 (2000).

    Article  CAS  Google Scholar 

  22. J. Norman, T., C. D. Grant, D. Magana, D. Cao, F. Bridges, J. Liu, A. van Buuren, and J. Z. Zhang, Near infrared optical absorption of gold nanoparticle aggregates, J. Phys. Chem. B, in press (2002).

    Google Scholar 

  23. S. J. Oldenburg, R. D. Averitt, S. L. Westcott, and N. J. Halas, Nanoengineering of optical resonances, Chem. Phys. Lett. 288, 243–247 (1998).

    Article  CAS  Google Scholar 

  24. D. Ricard, P. Roussignol, and C. Flytzanis, Surface-mediated enhancement of optical phase conjugation in metal colloids, Opt. Lett. 10, 511–513 (1985).

    Article  CAS  Google Scholar 

  25. J. H. Adair, T. Li, T. Kido, K. Havey, J. Moon, J. Mecholsky, A. Morrone, D. R. Talham, M. H. Ludwig, and L. Wang, Recent developments in the preparation and properties of nanometer-size spherical and platelet-shaped particles and composite particles, Mater. Sci. Eng. R. 23, 139–242 (1998).

    Article  Google Scholar 

  26. K. Uchida, S. Kaneko, S. Omi, C. Hata, H. Tanji, Y. Asahara, A. J. Ikushima, T. Tokizaki, and A. Nakamura, Optical nonlinearities of a high concentration of small metal particles dispersed in glass: copper and silver particles, J. Opt. Soc. Am. B (Opt. Phys.) 11, 1236–1243 (1994).

    CAS  Google Scholar 

  27. W. Schrof, S. Rozouvan, E. van Keuren, D. Horn, J. Schmitt, and G. Decher, Nonlinear optical properties of polyelectrolyte thin films containing gold nanoparticles investigated by wavelength dispersive femtosecond degenerate four wave mixing (DFWM), Adv. Mater. 10, 338–341 (1998).

    Article  CAS  Google Scholar 

  28. K. Puech, F. Z. Henari, W. J. Blau, D. Duff, and G. Schmid, Investigation of the ultrafast dephasing time of gold nanoparticles using incoherent light, Chem. Phys. Lett. 247, 13–17 (1995).

    Article  CAS  Google Scholar 

  29. G. Berkvic and S. Efrima, Second harmonic generation from composite films of spheroidal metal particles, Langmuir 9, 35–357 (1993).

    Google Scholar 

  30. B. Lamprecht, A. Leitner, and F. R. Aussenegg, SHG studies of plasmon dephasing in nanoparticles, Appl. Phys. B—Lasers and Optics 68, 419–423 (1999).

    CAS  Google Scholar 

  31. L. A. Peyser, A. E. Vinson, A. P. Bartko, and R. M. Dickson, Photoactivated fluorescence from individual silver nanoclusters, Science 291, 103–106 (2001).

    Article  CAS  Google Scholar 

  32. O. Varnavski, R. G. Ispasoiu, L. Balogh, D. Tomalia, and T. Goodson, Ultrafast time-resolved photoluminescence from novel metal-dendrimer nanocomposites, J. Chem. Phys. 114, 1962–1965 (2001).

    Article  CAS  Google Scholar 

  33. A. Mooradian, Photoluminescence of metals, Phys. Rev. Lett. 22, 185–187 (1969).

    Article  CAS  Google Scholar 

  34. S. Link, M. B. Mohamed, and M. A. El-Sayed, Simulation of the optical absorption spectra of gold nanorods as a function of their aspect ratio and the effect of the medium dielectric constant, J. Phys. Chem. B 103, 3073–3077 (1999).

    CAS  Google Scholar 

  35. T. P. Bigioni, R. L. Whetten, and O. Dag, Near-infrared luminescence from small gold nanocrystals, J. Phys. Chem. B 104, 6983–6986 (2000).

    Article  CAS  Google Scholar 

  36. T. Huang and R. W. Murray, Visible luminescence of water-soluble monolayer-protected gold clusters, J. Phys. Chem. B 105, 12498–12502 (2001).

    CAS  Google Scholar 

  37. M. Moskovits, Surface-enhanced spectroscopy, Rev. Mod. Phys. 57, 783–826 (1985).

    Article  CAS  Google Scholar 

  38. R. G. Freeman, M. B. Hommer, K. C. Grabar, M. A. Jackson, and M. J. Natan, Ag-clad Au nanoparticles—novel aggregation, optical, and surface-enhanced Raman scattering properties, J. Phys. Chem. 100, 718–724 (1996).

    CAS  Google Scholar 

  39. A. M. Ahern and R. L. Garrell, Protein-metal interactions in protein-colloid conjugates probed by surface-enhanced Raman spectroscopy, Langmuir 7, 254–261 (1991).

    Article  CAS  Google Scholar 

  40. M. Hidalgo, R. Montes, J. J. Laserna, and A. Ruperez, Surface-enhanced resonance Raman spectroscopy of 2-pyridylhydrazone and 1,10-phenanthroline chelate complexes with metal ions on colloidal silver, Anal. Chim. Acta 318, 229–237 (1996).

    Article  CAS  Google Scholar 

  41. S. M. Barnett, B. Vlckova, I. S. Butler, and T. S. Kanigan, Surface-enhanced Raman scattering spectroscopic study of 17-alpha-ethinylestradiol on silver colloid and in glass-deposited Ag-17-alpha-ethinylestradiol film, Anal. Chem. 66, 1762–1765 (1994).

    Article  CAS  Google Scholar 

  42. P. Matejka, B. Vlckova, J. Vohlidal, P. Pancoska, and V. Baumruk, The role of Triton X-100 as an adsorbate and a molecular spacer on the surface of silver colloid—a surface-enhanced Raman scattering study, J. Phys. Chem. 96, 1361–1366 (1992).

    Article  CAS  Google Scholar 

  43. K. Cermakova, O. Sestak, P. Matejka, V. Baumruk, and B. Vlckova, Surface-enhanced Raman scattering (SERS) spectroscopy with borohydride-reduced silver colloids—controlling adsorption of the scattering species by surface potential of silver colloid, Collee. Czech. Chem. Commun. 58, 2682–2694 (1993).

    CAS  Google Scholar 

  44. S. Schneider, P. Halbig, H. Grau, and U. Nickel, Reproducible preparation of silver sols with uniform particle size for application in surface-enhanced Raman spectroscopy, Photochem. Photobiol. 60, 605–610 (1994).

    Google Scholar 

  45. M. Fleischmann, P. J. Hendra, and A. J. McQuillan, Raman spectra of pyridine adsorbed at a silver electrode, Chem. Phys. Lett. 26, 163–166 (1974).

    Article  CAS  Google Scholar 

  46. C. H. Munro, W. E. Smith, M. Garner, J. Clarkson, and P. C. White, Characterization of the surface of a citrate-reduced colloid optimized for use as a substrate for surface-enhanced resonance Raman scattering, Langmuir 11, 3712–3720 (1995).

    Article  CAS  Google Scholar 

  47. T. M. Cotton, J. H. Kim, and G. D. Chumanov, Application of surface-enhanced Raman spectroscopy to biological systems, J. Raman Spectrosc. 22, 729–742 (1991).

    Article  CAS  Google Scholar 

  48. T. Klar, M. Perner, S. Grosse, G. vonPIessen, W. Spirkl, and J. Feldmann, Surface-plasmon resonances in single metallic nanoparticles, Phys. Rev. Lett. 80, 4249–4252 (1998).

    Article  CAS  Google Scholar 

  49. D. Steinmuller-Nethl, R. A. Hopfel, E. Gornik, A. Leitner, and F. R. Aussenegg, Femtosecond relaxation of localized plasma excitations in Ag islands, Phys. Rev. Lett. 68, 389–392 (1992).

    Google Scholar 

  50. F. Stietz, J. Bosbach, T. Wenzel, T. Vartanyan, A. Goldmann, and F. Trager, Decay times of surface plasmon excitation in metal nanoparticles by persistent spectral hole burning, Phys. Rev. Lett. 84, 5644–5647 (2000).

    Article  CAS  Google Scholar 

  51. Y. H. Liau, A. N. Unterreiner, Q. Chang, and N. F. Scherer, Ultrafast dephasing of single nano-particles studied by two-pulse second-order interferometry, J. Phys. Chem. B 105, 2135–2142 (2001).

    Article  CAS  Google Scholar 

  52. T. W. Roberti, B. A. Smith, and J. Z. Zhang, Ultrafast electron dynamics at the liquid-metal interface—femtosecond studies using surface plasmons in aqueous silver colloid, J. Chem. Phys. 102, 3860–3866 (1995).

    Article  CAS  Google Scholar 

  53. A. E. Faulhaber, B. A. Smith, J. K. Andersen, and J. Z. Zhang, Femtosecond electronic relaxation dynamics in metal nano-particles-effects of surface and size confinement, Mol. Cryst. Liq. Cryst. Sci. Technol. Sec. A—Mol. Cryst. Liq. Cryst. 283, 25–30 (1996).

    CAS  Google Scholar 

  54. J. Y. Bigot, J. C. Merle, O. Cregut, and A. Daunois, Electron dynamics in copper metallic nanoparticles probed with femtosecond optical pulses, Phys. Rev. Lett. 75, 4702–4705 (1995).

    Article  CAS  Google Scholar 

  55. T. S. Ahmadi, S. L. Logunov, and M. A. El-Sayed, Picosecond dynamics of colloidal gold nanoparticles, J. Phys. Chem. 100, 8053–8056 (1996).

    Article  CAS  Google Scholar 

  56. B. A. Smith, J. Z. Zhang, U. Giebel, and G. Schmid, Direct probe of size-dependent electronic relaxation in single-sized Au and nearly monodisperse Pt colloidal nano-particles, Chem. Phys. Lett. 270, 139–144 (1997).

    Article  CAS  Google Scholar 

  57. S. L. Logunov, T. S. Ahmadi, M. A. El-Sayed, J. T. Khoury, and R. L. Whetten, Electron dynamics of passivated gold nanocrystals probed by subpicosecond transient absorption spectroscopy, J. Phys. Chem. B 101, 3713–3719 (1997).

    CAS  Google Scholar 

  58. M. Perner, P. Bost, U. Lemmer, G. von Plessen, J. Feldmann, U. Becker, M. Mennig, M. Schmitt, and H. Schmidt, Optically induced damping of the surface plasmon resonance in gold colloids, Phys. Rev. Lett. 78, 2192–2195 (1997).

    Article  CAS  Google Scholar 

  59. J. Hodak, I. Martini, and G. V. Hartland, Ultrafast study of electron-phonon coupling in colloidal gold particles, Chem. Phys. Lett. 284, 135–141 (1998).

    Article  CAS  Google Scholar 

  60. J. H. Hodak, I. Martini, and G. V. Hartland, Spectroscopy and dynamics of nanometer-sized noble metal particles, J. Phys. Chem. B 102, 6958–6967 (1998).

    Article  CAS  Google Scholar 

  61. S. Link and M. A. El-Sayed, Spectral properties and relaxation dynamics of surface plasmon electronic oscillations in gold and silver nanodots and nanorods, J. Phys. Chem. B 103, 8410–8426 (1999).

    CAS  Google Scholar 

  62. A. Stella, M. Nisoli, S. Desilvestri, O. Svelto, G. Lanzani, P. Cheyssac, and R. Kofman, Size effects in the ultrafast electronic dynamics of metallic tin nanoparticles, Phys. Rev. B: Condens. Matter 53, 15497–15500 (1996).

    CAS  Google Scholar 

  63. J. Z. Zhang, B. A. Smith, A. E. Faulhaber, J. K. Andersen, and T. J. Rosales, in: Ultrafast Processes in Spectroscopy, edited by O. Svelto, S. De Silvestri and G. Denardo (Plenum Press, Trieste, Italy, 1995), p. 668.

    Google Scholar 

  64. M. Nisoli, S. Stagira, S. DeSilvestri, A. Stella, P. Tognini, P. Cheyssac, and R. Kofman, Ultrafast electronic dynamics in solid and liquid gallium nanoparticles, Phys. Rev. Lett. 78, 3575–3578 (1997).

    CAS  Google Scholar 

  65. R. D. Averitt, S. L. Westcott, and N. J. Halas, Ultrafast electron dynamics in gold nanoshells, Phys. Rev. B: Condens. Matter 58, 10203–10206 (1998).

    Google Scholar 

  66. R. H. M. Groeneveld, R. Sprik, and A. Lagendijk, Femtosecond spectroscopy of electron-electron and electron—phonon energy relaxation in Ag and Au, Phys. Rev. B: Condens. Matter 51, 11433–11445 (1995).

    CAS  Google Scholar 

  67. H. E. Elsayed-Ali, T. B. Norris, M. A. Pessot, and G. A. Mourou, Time-resolved observation of electron—phonon relaxation in copper, Phys. Rev. Lett. 58, 1212–1215 (1987).

    Article  CAS  Google Scholar 

  68. R. W. Schoenlein, W. Z. Lin, J. G. Fujimoto, and G. L. Easley, Femtosecond studies of nonequilibrium electronic processes in metals, Phys. Rev. Lett. 58, 1680–1683 (1987).

    Article  CAS  Google Scholar 

  69. C. K. Sun, F. Vallee, L. H. Acioli, E. P. Ippen, and J. G. Fujimoto, Femtosecond-tunable measurement of electron thermalization in gold, Phys. Rev. B: Condens. Matter 50, 15337–15348 (1994).

    CAS  Google Scholar 

  70. M. Nisoli, S. De Silvestri, A. Cavalleri, A. M. Malvezzi, A. Stella, G. Lanzani, P. Cheyssac, and R. Kofman, Coherent acoustic oscillations in metallic nanoparticles generated with femtosecond optical pulses, Phys. Rev. B: Condens. Matter 55, 13424–13427 (1997).

    Google Scholar 

  71. J. H. Hodak, I. Martini, and G. V. Hartland, Observation of acoustic quantum beats in nanometer sized Au particles, J. Chem. Phys. 108, 9210–9213 (1998).

    Article  CAS  Google Scholar 

  72. E. D. Belolskii and P. M. Tomchuk, Surface electron phonon energy exchange in small metallic particles, Int. J. Electron. 73, 955–957 (1992).

    Google Scholar 

  73. E. D. Belotskii and P. M. Tomchuk, Electron—phonon interaction and hot electrons in small metal islands, Surf. Sci. 239, 143–155 (1990).

    Article  CAS  Google Scholar 

  74. S. A. Gorban, S. A. Nepijko, and P. M. Tomchuk, Electron phonon interaction in small metal islands deposited on an insulating substrate, Int. J. Electron. 70, 485–490 (1991).

    CAS  Google Scholar 

  75. S. M. Nie and S. R. Emery, Probing single molecules and single nanoparticles by surface-enhanced Raman scattering, Science 275, 1102–1106 (1997).

    Article  CAS  Google Scholar 

  76. S. R. Emory and S. M. Nie, Near-field surface-enhanced Raman spectroscopy on single silver nanoparticles, Anal. Chem. 69, 2631–2635 (1997).

    Article  CAS  Google Scholar 

  77. S. R. Emory, W. E. Haskins, and S. M. Nie, Direct observation of size-dependent optical enhancement in single metal nanoparticles, J. Am. Chem. Soc. 120, 8009–8010 (1998).

    Article  CAS  Google Scholar 

  78. M. Perner, T. Klar, S. Grosse, U, Lemmer, G. von Plessen, W. Spirkl, and J. Feldmann, Homogeneous line widths of surface plasmons in gold nanoparticles measured by femtosecond pump-and-probe and near-field optical spectroscopy, J. Lumin. 76–77, 181–184 (1998).

    Google Scholar 

  79. T. Klaus, R, Joerger, E. Olsson, and C. G. Granqvist, Silver-based crystalline nanoparticles, microbially fabricated, Proc. Nat. Acad. Sci. USA 96, 13611–13614 (1999).

    Article  CAS  Google Scholar 

  80. G. Peleg, A. Lweis, O. Bouevitch, L. Loew, D. Parnas, and M. Linial, Gigantic optical nonlinearities from nanoparticle-enhanccd molecule probes with potential for selectively imaging the structure and physiology of nanometric regions in cellular systems, Bioimaging 4, 215–224 (1996).

    Article  Google Scholar 

  81. C. P. Gibson, Synthesis and characterization of anisometric cobalt nanoclusters, Science 267, 1338–1340 (1995).

    CAS  Google Scholar 

  82. A. T. Ngo, P. Bonville, and M. P. Pileni, Nanoparticles of CoxFey Square O-z(4): Synthesis and superparamagnetic properties, Eur. Phys. J. B 9, 583–592 (1999).

    Article  CAS  Google Scholar 

  83. X. X. Zhang, G. H. Wen, S. M. Huang, L. M. Dai, R. P. Gao, and Z. L. Wang, Magnetic properties of Fe nanoparticles trapped at the tips of the aligned carbon nanotubes, J. Magn. Magn. Mater. 231, L9–L12 (2001).

    Article  CAS  Google Scholar 

  84. Y. K. Gunko, S. C. Pillai, and D. Mclnerney, Magnetic nanoparticles and nanoparticle assemblies from metallorganic precursors, J. Mater. Sci. — Mater. Electron. 12, 299–302 (2001).

    CAS  Google Scholar 

  85. C. D. Fernandez, C. Sangregorio, G. Mattei, C. Maurizio, G. Battaglin, F. Gonella, A. Lascialfari, S. Lo Russo, D. Gatteschi, P. Mazzoldi, J. M. Gonzalez, and F. D’Acapito, Magnetic properties of Co and Ni based alloy nanoparticles dispersed in a silica matrix, Nucl. Instrum. Methods Phys. Res. Sect. B—Beam Interactions with Materials and Atoms 175, 479–484 (2001).

    Google Scholar 

  86. V. F. Puntes, K. M. Krishnan, and P. Alivisatos, Synthesis, self-assembly, and magnetic behavior of a two-dimensional superlattice of single-crystal epsilon-Co nanoparticles, Appl. Phys. Lett. 78, 2187–2189 (2001).

    Article  CAS  Google Scholar 

Download references

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Kluwer Academic Publishers

About this chapter

Cite this chapter

(2004). Optical, Electronic, and Dynamic Properties of Metal Nanomaterials. In: Self-Assembled Nanostructures. Nanostructure Science and Technology. Springer, Boston, MA. https://doi.org/10.1007/0-306-47941-9_9

Download citation

  • DOI: https://doi.org/10.1007/0-306-47941-9_9

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-306-47299-2

  • Online ISBN: 978-0-306-47941-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics