Skip to main content

Examples of Nanoscale Materials in Nature

  • Chapter
  • 531 Accesses

Part of the book series: Nanostructure Science and Technology ((NST))

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. B. Alberts, D. Bray, A. Johnson, J. Lewis, M. Raff, K. Roberts, and P. Walter, Protein structures and functions, in: Essential Cell Biology (Garland Publishing Inc., New York and London, 1998), Chapter 5, pp. 133–182.

    Google Scholar 

  2. H. Lodish, D. Baltimore, A. Berk, S. L. Zipursky, P. Matsudaria, and J. Darnell, Molecular Cell Biology (Scientific American Books, New York, 1995).

    Google Scholar 

  3. E. N. Marrieb, Chemistry comes alive, in: Human Anatomy and Physiology (Benjamin/Cummings Science Publishing, Menlo Part, 1998), Chapter 2, pp. 47–50.

    Google Scholar 

  4. E. N. Marrieb, Cells: The living units, in: Human Anatomy and Physiology (Benjamin/Cummings Science Publishing, Menlo Part, 1998), Chapter 3, p. 66.

    Google Scholar 

  5. S. C. Marks Jr. and D. C. Hermey, The structure and development of bone, in: Principles of Bone Biology, edited by J. P. Bilezikian, L. G. Raisz, and G. A. Rodan (Academic Press, San Diego, 1996), Chapter 1, pp. 3–14.

    Google Scholar 

  6. J. Rossert and B. de Crombrugghe, Type I collagen: structure, synthesis, and regulation, in: Principles of Bone Biology, edited by J. P. Bilezikian, L. G. Raisz, and G. A. Rodan (Academic Press, San Diego, 1996), Chapter 10, pp. 127–142.

    Google Scholar 

  7. W. J. Landis, K. J. Hodgens, J. Arena, M. J. Song, and B. F. McEwen, Structure relationship between collagen and mineral in bone as determined by high voltage electron microscopic tomography, Microsc. Res. Tech. 33, 192–202 (1996).

    Article  CAS  Google Scholar 

  8. J. D. Currey, Biocomposites: Micromechanics of biological hard tissues, Curr. Opin. Solid State Mater. Sci. 1(3), 440–445 (1996).

    CAS  Google Scholar 

  9. P. Bianco, Structure and mineralization of bone, in: Calcification in Biological Systems, edited by E. Bonucci (CRC Press, Boca Taton, 1992), Chapter 11, pp. 243–268.

    Google Scholar 

  10. K. M. Wilbur and G. Owen, Growth, in: Physiology of Mollusca, edited by K. M. Wilbur and C. M. Yonge (Academic Press, New York, 1964), Chapter 8, pp. 243–282.

    Google Scholar 

  11. K. M. Wilbur, Shell formation and regeneration, in: Physiology of Mollusca, edited by K. M. Wilbur and C. M. Yonge (Academic Press, New York, 1964), Chapter 7, pp. 211–242.

    Google Scholar 

  12. G. Grégoire, Ultrastructure of the nautilus shell, in Nautilus, The Biology and the Paleobiology of a Living Fossil, edited by W. B. Saunders, and N. H. Landman (Plenum Press, New York, 1987), pp. 463–486.

    Google Scholar 

  13. A. P. Kackson, J. F. V. Vincent, and R. M. Turner, The mechanical design of nacre, Proc. R. Soc. London, Set: B 234, 415–440 (1998).

    Google Scholar 

  14. J. D. Currey, Mechanical properties of mollusc shell, in: The Mechanical Properties of Biological Materials, Vol. XXIV, edited by J. F. V. Vincent and J. D. Currey (Cambridge University Press, Cambridge, 1980), pp. 75–97.

    Google Scholar 

  15. A. G. Evans and D. A. Marshall, The mechanical behavior of the ceramic matrix composites, Acta. Met. 37, 2567–2583 (1989).

    CAS  Google Scholar 

  16. N. Almqvist, N. H. Thomson, B. L. Smith, G.D. Stucky, D. E. Morse, and P. K. Hansma, Methods for fabricating and characterizing a new generation of biomimetic materials, Mater. Sci. Eng. C 7(1), 37–34 (1999).

    Article  Google Scholar 

  17. R. Z. Wang, Z. Suo, A. G. Evans, N. Yao, and I. A. Aksay, Deformation mechanisms in nacre, J. Mater. Res. 16, 2485–2493 (2001).

    CAS  Google Scholar 

  18. A. G. Evans, Z. Suo, R. Z. Wang, I. A. Aksay, M. Y. He, and J. W. Hutchinson, A model for the robust mechanical behavior of nacre, J. Mater. Res. 16, 2475–2484 (2001).

    CAS  Google Scholar 

  19. B. L. Smith, T. E. Schaffer, M. Viani, J. B. Thompson, N. A. Frederick, J. Kindt, A. Belcher, G. D. Stucky, D. E. Morse, and P. K. Hansma, Molecular mechanistic origin of the toughness of natural adhesives, fibers and composites, Nature 399, 761–763 (1999).

    CAS  Google Scholar 

  20. M. Rief, M. Cautel, F. Oesterhelt, J. M. Fernandez, and H. E. Guab, Reversible unfolding of individual titin immunoglobulin domain by AFM, Science 276(5315), 1295–1297 (1997).

    Article  Google Scholar 

  21. H. Lu, B. Isralewitz, A. Krammer, V. Vogel, and K. Schulten, Unfolding of titin immunoglobulin domains by steered molecular dynamics simulation, Biophys. J. 75(2), 667–671 (1998).

    Article  Google Scholar 

  22. A. L. Boskey, Biomineralizalion: Conflicts, challenges, and opportunities, J. Cell. Biochem. 30/31, 83–91 (1998).

    Google Scholar 

  23. X. Shen, A. M. belcher, P. K. Hansma, G. Stucky, and D. E. Morse, Molecular cloning and characterization of lustrin A, a matrix protein from shell and pearl nacre of haliotis rufescens, J. Biochem. 272(51), 32472–32481 (1997).

    CAS  Google Scholar 

  24. M. Fritz, Am. M. Belcher, M. Radmacher, D. A Walters, P. K. Hansma, G. D. Stucky, D. E. Morse, and S. Mann, Flat pearls from biofabrication of organized composites on inorganic substrates, Nature 371, 49–51 (1994).

    Article  CAS  Google Scholar 

  25. C. M. Zaremba, A. M. Blcher, M. Fritz, Y. L. Li, S. Mann, P. K. Hasma, D. E. Morse, J. S. Speck, and G. D. Stucky, Critical transitions in the biofabrication of abalone shells and flat pearls, Chem. Mater. 8, 679–690 (1996).

    Article  CAS  Google Scholar 

  26. A. M. Belcher, P. K. Hansma, G. D. Stucky, and D. E. Morse, First steps in harnessing the potential of biomineralizalion as a route to new high-performance composite materials, Acta Mater. 46(3), 733–336 (1998).

    Article  CAS  Google Scholar 

  27. M. Fritz and D. E. Morse, The formation of highly organized polymer/ceramic composite materials: The high-performance microaluminate of the molluscan nacre, Curr. Opin. Colloid. Interface Sci. 3(1), 55–62 (1998).

    Article  CAS  Google Scholar 

  28. A. M. Belcher, X. H. Wu, R. J. Christensen, P. K. Hansma, G. D. Stucky, and D. E. Morse, Control of crystal phase switching and orientation by soluble mollusc-shell proteins, Nature 381(2), 56–58 (1996).

    CAS  Google Scholar 

  29. G. Falini, S. Albeck, S. Weiner, and L. Addadi, Control of aragonite or calcite polymorphism by mollusk shell macromolecules, Science 271(5245), 67 (1996).

    Google Scholar 

  30. M. Golber and A. L. Boskey, Lipids and biomineralizations, Prog. Histochem. Cytochem. 31, 1–187 (1997).

    Google Scholar 

  31. A. L. Boskey, Will biomimetics provide new answers to old problems of calcified tissues, Calcified Tissue Int. 63, 179–182 (1998).

    CAS  Google Scholar 

  32. A. D. Metha, M. Rief, J. A. Spudich, D. A. Smith, and R. M. Simmons, Single-molecular biomechanics with optical methods, Science 283(5408), 1689 (2000).

    Google Scholar 

  33. H. Noji, R. Yasuda, M. Yoshida, and K. Kinosita Jr., Direct observation of the rotation of F-l-ATPasc, Nature 386, 299–302 (1997).

    Article  CAS  Google Scholar 

  34. R. Simmons, Molecular motors, single-molecule mechanics, Curr. Biol. 6, 392–394 (1996).

    Article  CAS  Google Scholar 

  35. R. Yasuda, H. Noji, K. Kinsita Jr., and M. Yashida, F-1-ATPase is a highly efficient molecular motor that rotates with discrete 120 degrees steps, Cell 93, 1117 (1998).

    Article  CAS  Google Scholar 

  36. D. W. Urry, Elastic biomolecular machines, Sci. Am. 64–69 (1995).

    Google Scholar 

  37. D. W. Urry, Physical chemistry of biological free energy transduction as demonstrated by elastic protein-based polymers, J. Phys. Chem. B. 101, 11007–11028 (1997).

    Article  CAS  Google Scholar 

  38. J. Howard, Structure of motor proteins, in: Mechanics of Motor Proteins and Cytoskeleton, Chapter 12 (Sinauer Associates Inc., Sunderland, Massachusetts, 2001), pp. 197–212.

    Google Scholar 

  39. A. D. Metha, M. Rief, J. A. Spudich, D. A. Smith, and R. M. Simmons, Single-molecule biomechanics with optical methods, Science 283, 1689–1695 (1999).

    Google Scholar 

  40. J. Howard, Structures of cytoskeleton filaments, in: Mechanics of Motor Proteins and Cytoskeleton, Chapter 7 (Sinauer Associates Inc., Sunderland, Massachusetts, 2001), pp. 121–134.

    Google Scholar 

  41. R. D. Vale and R. A. Milligan, The way things move: Looking under the hood of molecular motor proteins, Science 288, 88–95 (2000).

    Article  CAS  Google Scholar 

  42. J. Howard, Molecular motors: Structural adaptations to cellular functions, Nature 389, 561–567 (1997).

    CAS  Google Scholar 

  43. S. Leibler, Collective phenomena in motosis: A physicists’ perspective, in: Physics of Biomaterials: Fluctuation, Self assembly, and Evolution, edited by T. Riste and D. Scherrington (Kluwer Academic Publishers, Dordecht, Netherlands, 1996), pp. 135–151.

    Google Scholar 

  44. W. Hughes, The behavior of striated muscles, in: Aspects of Biophysics (John Wiley 298.

    Google Scholar 

  45. A. G. Lowe, Energetics of muscle contraction in: Biochemical Thermodynamics, edited by M. N. Jones (Elsevier Scientific Publication Co, 1979), Chapter 10, pp. 308–332.

    Google Scholar 

  46. A. M. Gordon, E. Homsher, and M. Regnier, Regulation of contraction in striated muscle, Physiol. Rev. 80(2), 853–924 (2000).

    CAS  Google Scholar 

  47. E. N. Marrieb, Chemistry comes alive, in: Human Anatomy and Physiology (Benjamin/Cummings Science Publishing, Menlo Part, 1998), Chapter 9, pp. 261–301.

    Google Scholar 

Download references

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Kluwer Academic Publishers

About this chapter

Cite this chapter

(2004). Examples of Nanoscale Materials in Nature. In: Self-Assembled Nanostructures. Nanostructure Science and Technology. Springer, Boston, MA. https://doi.org/10.1007/0-306-47941-9_3

Download citation

  • DOI: https://doi.org/10.1007/0-306-47941-9_3

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-306-47299-2

  • Online ISBN: 978-0-306-47941-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics