Advertisement

Host Resistance to Downy Mildew Diseases

  • B. Mauch-Mani

Keywords

Salicylic Acid Tobacco Mosaic Virus Downy Mildew Induce Systemic Resistance Field Resistance 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Agrios, G. N. (1988) Plant Pathology (London: Academic Press).Google Scholar
  2. Alexander, D., Goodman, R.M., Gut-Rella, M., Glascock, C., Weyman, K., Friedrich, L., Maddox, D., Ahl Goy, P., Luntz, T., Ward, E. and Ryals, J.A. (1993) Increased tolerance to two oomycete pathogens in transgenic tobacco expressing pathogenesis-related protein 1a. Proceedings of the National Academy of Science USA 90, 7327–7331.Google Scholar
  3. Baker, B., Zambryski, P., Staskawicz, B. and Dinesh-Kumar, S.P. (1997) Signalling in plant-microbe interactions, Science 276, 726–733.PubMedGoogle Scholar
  4. Balass, M., Cohen, Y. and Bar-Joseph, M. (1993) Temperature-dependent resistance to downy mildew in muskmelon: Structural responses, Physiological and Molecular Plant Pathology 43, 11–20.CrossRefGoogle Scholar
  5. Bartnicki-Garcia, S. (1970) Cell wall composition and other biochemical markers in fungus phylogeny, in J. B. Harborne (ed.) Phytochemical Phylogeny, Academic Press London, pp. 81–102.Google Scholar
  6. Bennett, M., Gallagher, M., Fagg, J. Bestwick, C.S., Paul, T., Beale, M. and Mansfield, J.W. (1996) The hypersensitive reaction, membrane damage, and accumulation of autofluorescent phenolics in lettuce cells challenged by Bremia lactucae, The Plant Journal 9, 851–865.CrossRefGoogle Scholar
  7. Bennett, M. H., Gallagher, M.D.S., Bestwick, C.S., Rossiter, J.T. and Mansfield, J.W. (1994) The phytoalexin response of lettuce to challenge by Botrytis cinerea, Bremia lactucae and Pseudomonas syringae pv. Phaseolicola, Physiological and Molecular Plant Pathology 44, 321–333.Google Scholar
  8. Bent, A. F. (1996) Plant disease resistance genes. Function meets structure. The Plant Cell 8, 1757–1771PubMedGoogle Scholar
  9. Bent, A. F., Kunkel, B.N., Dahlbeck, D., Brown, K.L., Schmidt, R.L., Giraudat, J., Leung, J.L. and Staskawicz, B.J. (1994) RPS2 of Arabidopsis thaliana. A leucine-rich repeat class of plant disease resistance genes, Science 265, 1856–1860.PubMedGoogle Scholar
  10. Benz, A. and Spring, O. (1995) Identification and characterization of an auxin-degrading enzyme in downy mildew infected sunflower, Physiological and Molecular Plant Pathology 46, 163–175.CrossRefGoogle Scholar
  11. Bittner-Eddy, D., Crute, I.R., Holub, E.B. and Beynon, J.L. (2000) RPP13 is a simple locus in Arabidopsis thaliana for alleles that specify downy mildew resistance to different avirulence determinants in Peronospora parasitica, Plant Journal 21, 177–188.PubMedCrossRefGoogle Scholar
  12. Bohlmann, H. (1994) The role of thionins in plant protection, Critical Reviews in Plant Science 13, 1–16.Google Scholar
  13. Botella, M. A., Parker, J. E., Frost, L. N., Bittner-Eddy, P. D., Beynon, J. L., Daniels, M. J., Holub, E. B., Jones, J. D. G. (1998) Three genes of the Arabidopsis RPP1 complex resistance locus recognize distinct Peronospora parasitica avirulence determinants, The Plant Cell 10, 1847–1860.PubMedGoogle Scholar
  14. Bowles, D. J. (1990) Defense-related proteins in higher plants, Annual Review of Biochemistry 59, 873–907.PubMedCrossRefGoogle Scholar
  15. Bowling, S. A., Guo, A., Cao, H., Gordon, A. S., Klessig, D.F. and Dong, X. (1994) A mutation in Arabidopsis that leads to constitutive expression of systemic acquired resistance. The plant Cell 6, 1845–1857.PubMedGoogle Scholar
  16. Cao, H., Glazebrook, J., Clarke, J.D., Volko, S. and Dong, X. (1997) The Arabidopsis NPR1 gene that controls systemic acquired resistance encodes a novel protein containing ankyrin repeats, Cell 88, 57–63.PubMedCrossRefGoogle Scholar
  17. Cao, H., Bowling, S.A., Gordon, A.S. and Dong, X. (1994) Characterization of an Arabidopsis mutant that is nonresponsive to inducers of systemic acquired resistance The Plant Cell 6, 1583–1592.PubMedGoogle Scholar
  18. Cavalier-Smith, T. (1986) The kingdom Chromista: Origins and systematics, in I. Round, Chapman, D.J. (ed) Progress in Phycological Research, Biopress Bristol, pp. 309–347.Google Scholar
  19. Century, K. S., Holub, E.B. and Staskawicz, B.J. (1995) NDR1, a locus of Arabidopsis thaliana that is required for disease resistance to both a bacterial and a fungal pathogen, Proceedings of the National Academy of Science USA 92, 6597–6601.Google Scholar
  20. Century, K. S., Shapiro, A.D., Repetti, P.P., Dahlbeck, D., Holub, E.B. and Staskawicz, B.J. (1997) NDR1, a pathogen-induced component required for Arabidopsis disease resistance, Science 278, 1963–1965.PubMedCrossRefGoogle Scholar
  21. Chen, Z. X. and Klessig, D.F. (1991) Identification of a soluble salicylic acid-binding protein that may function in signal transduction in the plant disease-resistance response, Proceedings of the National Academy of Science USA 88, 8170–8183.Google Scholar
  22. Chen, Z. X., Silva, H. and Klessig, D.F. (1993) Active oxygen species in the induction of plant systemic acquired resistance by salicylic acid, Science 262, 1883–1885.PubMedGoogle Scholar
  23. Chester, K. S. (1933). The problem of acquired physiological immunity in plants, Quarterly Review of Biology 8, 275–324.Google Scholar
  24. Clark, J. S. C. and Spencer-Phillips, P.T.N. (1993) Accumulation of photoassimilate by Peronospora viciae (Berk.) Casp. and leaves of Pisum sativum L.: evidence for nutrient uptake via intercellular hyphae, New Phytologist 124, 107–119.Google Scholar
  25. Cohen, Y. (1994) 3-Aminobutyric acid induces resistance against Peronospora tabacina, Physiological and Molecular Plant Pathology 44, 273–288.CrossRefGoogle Scholar
  26. Cohen, Y., Gisi, U. and Niederman, T. (1993) Local and systemic protection against Phytophthora infestans induced in potato and tomato plants by jasmonic acid and jasmonic methyl ester, Phytopathology 83, 1054–1062.Google Scholar
  27. Cohen, Y., Eyal, H., Hanania, J. and Malik, Z. (1989) Ultrastructure of Pseudoperonospora cubensis in muskmelon genotypes susceptible and resistant to downy mildew, Physiological and Molecular Plant Pathology 34, 27–40.CrossRefGoogle Scholar
  28. Cohen, Y., Reuveni, M. and Baider, A. (1999) local and systemic activity of BABA (DL-3-aminobutyric acid) against Plasmopara viticola in grapevines, European Journal of Plant Pathology 105, 351–361.CrossRefGoogle Scholar
  29. Cosio, E. G., Frey, T. and Ebel, J. (1992) Identification of a high-affinity binding protein for a hepta-b-glucoside phytoalexin elicitor in soybean European Journal of Biochemistry 204, 1115–1123.PubMedCrossRefGoogle Scholar
  30. Crucefix, D. N., Rowell, P.M., Street, P.F.S. and Mansfield, J.W. (1987) A search for elicitors of the hypersensitive reaction in lettuce downy mildew disease, Physiological and Molecular plant Pathology 30, 39–54.CrossRefGoogle Scholar
  31. Crute, I. R. and Dixon, G.R. (1981) Diseases caused by Bremia Regel, in D. M. Spencer (ed.) The Downy Mildews, London, Academic Press New York, San Francisco, pp. 421–460.Google Scholar
  32. Crute, I. R. and Pink, A.C. (1996) Genetics and utilization of pathogen resistance in plants The Plant Cell 8, 1747–1755.PubMedGoogle Scholar
  33. Crute, I. R. and Norwood, J.M. (1981) The identification and characteristics of field resistance to lettuce downy mildew (Bremia lactucae Regel), Euphytica 30, 707–717.CrossRefGoogle Scholar
  34. Dai, G. H., Andary C., Mondolot-Cosson L. and Boubals D. (1995) Histochemical studies on the interaction between three species of grapevine, Vitis vinifera, V. rupestris and V. rotundifolia and the downy mildew fungus, Plasmopara viticola, Physiological and Molecular Plant Pathology 46, 177–188.Google Scholar
  35. Delaney, T., Friedrich, L. and Ryals, J. (1995) Arabidopsis signal transduction mutant defective in chemically and biologically induced disease resistance, Proceedings of the National Academy of Science USA 92, 6602–6606.Google Scholar
  36. Delaney, T. P., Uknes, S., Vernoij, B., Friedrich, L., Weymann, K., Negrotto, D., Gaffney, T., Gut-Rella, M., Kessmann, H., Ward, E. and Ryals, J. (1994) A central role of salicylic acid in plant disease resistance, Science 266, 1247–1250.PubMedGoogle Scholar
  37. Derks, W. and Creasy, L.L. (1989) The significance of stilbene phytoalexins in the Plasmopara viticola-grapevine interaction, Physiological and Molecular Plant Pathology 34, 189–202.Google Scholar
  38. DeWit, P. J. G. M. (1992) Molecular characterization of gene-for-gene systems in plant-fungus interactions and the application of avirulence genes in control of plant pathogens, Annual Review of Phytopathology 30, 391–418.CrossRefPubMedGoogle Scholar
  39. Dick, M. W. (1995) The straminipilous fungi. A new classification for the biflagellate fungi and their uniflagellate relatives with particular reference to Lagenidiaceous fungi., CAB International Mycological Paper No. 168.Google Scholar
  40. Dickson, J. G., Syamananda, R. and Flangas, A.C. (1959) The genetic approach to the physiology of parasitism of the corn rust pathogens, American Journal of Botany 46, 614–620.Google Scholar
  41. Dietrich, R. A., Delaney, T.P., Uknes, S.J., Ward, E.J., Ryals, J A. and Dangl, J.L. (1994) Arabidopsis mutants simulating disease resistance response, Cell 77, 565–578.PubMedCrossRefGoogle Scholar
  42. Dixon, G. R., Tonkin, M.H. and Doodson, J.K. (1973) Colonization of adult lettuce plants by Bremia lactucae, Annals of Applied Biology 74, 307–313.Google Scholar
  43. Dyck, P. L. and Johnson, R. (1983) Temperature sensitivity of genes for resistance in wheat to Puccinia recondita, Canadian Journal of Plant Pathology 5, 229–234.CrossRefGoogle Scholar
  44. Eenink, A.H. (1981) Partial resistance in lettuce to downy mildew (Bremia lactucae). I. Search for partially resistant genotypes and the influence of certain plant characters and environments on the resistance level, Euphytica 30, 619–628.Google Scholar
  45. Enyedi, A. J., Yalpani, N., Silverman, P. and Raskin, I. (1992) Localization, conjugation, and function of salicylic acid in tobacco during the hypersensitive reaction to tobacco mosaic virus, Proceedings of the National Academy of Science USA 89, 2480–2484.Google Scholar
  46. Flor, H. (1971) Current status of the gene-for-gene concept, Annual Review of Phytopathology 9, 275–296.CrossRefGoogle Scholar
  47. Fraymouth, J. (1956) Haustoria of the Peronosporales, Transactions of the British Mycological Society 39, 79–107.CrossRefGoogle Scholar
  48. Friend, J. (1985) Phenolic substances and plant disease, in C.F. van Sumere, Lea, P.J. (ed.) The biochemistry of plant phenolics, Clarendon Oxford, pp. 367–392.Google Scholar
  49. Gabriel, D. W. and Rolfe, B.G. (1990) Working models of specific recognition in plant-microbe interactions, Annual Review of Phytopathology 28, 365–391.CrossRefGoogle Scholar
  50. Gäumann, E. (1946) Pflanzliche Infektionslehre (Basel: Birkhäuser Verlag).Google Scholar
  51. Geetha, S., Shetty, S. A., Shetty, H. S. and Prakash, H. S. (1996) Arachidonic acid-induced hypersensitive cell death as an assay of downy mildew resistance in pearl millet Annals of Applied Biology 129, 91–96.Google Scholar
  52. Gianinazzi, S., Martin, C. and Vallée, J.C. (1970) Hypersensibilité aux virus, température et protéines solubles chez le Nicotiana xanthi n.c. Apparition de nouvelles macromolécules lors de la répression de la synthèse virale, Comptes Rendus de ľAcadémie des Sciences Paris 270, 2383–2386.Google Scholar
  53. Glazebrook, J. and Ausubel, F.M. (1994) Isolation of phytoalexin defficient mutants of Arabidopsis thaliana and characterization of their interactions with bacterial pathogens, Proceedings of the National Academy of Science 143, 8955–8959.Google Scholar
  54. Glazebrook, J., Zook, M., Mert, F., Kagan, I., Rogers, E. E., Crute, I. R., Holub, E. B., Hammerschmidt, R. and Ausubel, F. M. (1997) Phytoalexin-deficient mutants of Arabidopsis reveal that PAD4 encodes a regulatory factor and that four PAD genes contribute to downy mildew resistance, Genetics 146, 381–92PubMedGoogle Scholar
  55. Görlach, J., Volrath, S., Knauf-Beiter, G., Hengy, G., Oostendorp, M., Staub, T., Ward, E., Kessmann, H. and Ryals, J. (1996) Benzothiadiazole, a novel class of inducers of systemic acquired resistance, activates gene expression and disease resistance in wheat, The Plant Cell 8, 629–643.PubMedGoogle Scholar
  56. Gousseau, H. D. M., Deverall, B.J. and McIntosh, R.A. (1985) Temperature-sensitivity of the expression of resistance to Puccinia graminis conferred by Sr15,Sr9b, and Sr14 genes in wheat, Physiological Plant Pathology 27, 335–343.Google Scholar
  57. Grant, M. R., Godiard, L., Straube, E., Ashfield, T., Lewald, J., Sattler, A., Innes, R.W. and Dangl, J.L. (1995) Structure of the Arabidopsis RPM1 gene enabling dual specificity disease resistance, Science 269, 843–846.PubMedGoogle Scholar
  58. Griffith, J. M., Davis, A.J. and Grant, B.R. (1992) Target sites of fungicides to control oomycetes, in, W. Köller (ed.) Target Sites of Fungicide Action, CRC Press Boca Raton, pp. 69–100.Google Scholar
  59. Hammerschmidt, R. and Kuc, J. (1995) Induced resistance to disease in plants, Kluwer Dordrecht.Google Scholar
  60. Hammond-Kosack, K. E. and Jones, J.D.G. (1996) Resistance gene-dependent plant defense responses, The Plant Cell 8, 1773–1791.PubMedGoogle Scholar
  61. Hancock, J. G. and Huisman, O.C. (1981) Nutrient Movement in host-pathogen systems, Annual Review of Phytopathology 19, 309–331.CrossRefGoogle Scholar
  62. Heath, M. C. (1974) Light and electron microscope studiesof the interactions of host and non-host plants with cowpea rust — Uromyces phaseoli var. vignae, Physiological Plant Pathology 4, 403–414.Google Scholar
  63. Holliday, M. J., Long, M. and Keen, N.T (1981) Manipulation of the temperature-sensitive interaction between soybean leaves and Pseudomonas syringae pv. glycinea — implications on the nature of determinative events modulating hypersensitive resistance Physiological Plant Pathology 19, 209–216.Google Scholar
  64. Holub, E., Crute, I., Brose, E. and Beynon, J. (1993) Identification and mapping of loci in Arabidopsis for resistance to downy mildew and white blister, in K. Davis, Hammerschmidt, R. (ed.) Arabidopsis as a model for plant-pathogen interactions,: American Phytopathological Society Press St Paul, MN, pp. 21–35.Google Scholar
  65. Holub, E. B., Beynon, J. L. and Crute, I. R. (1994) Phenotypic and genotypic characterization of interactions between isolates of Peronospora parasitica and accessions of Arabidopsis thaliana, Molecular Plant-Microbe Interactions 7, 223–239.Google Scholar
  66. Hulbert, S. H., Ilott T. W., Legg E. J., Lincoln S. E., Lander E. S. and Michelmore R. W. (1988) Genetic analysis of the fungus Bremia lactucae using restriction fragment length polymorphisms, Genetics 120, 947–958.PubMedGoogle Scholar
  67. Hunt, M. and Ryals, J. (1996) Systemic acquired resistance signal transduction, Critical Reviews in Plant Science 15, 583–606.Google Scholar
  68. Islam, M. R., Shepherd, K.W. and Mayo, G,M.E. (1989) Effect of genotype and temperature on the expression L genes in flax conferring resistance to rust, Physiological and Molecular Plant Pathology 35, 141–150.CrossRefGoogle Scholar
  69. Jakab G., Cottier V., Toquin V., Rigoli G., Zimmerli L., Métraux J.-P., Mauch-Mani, B. (2001) beta-aminobutyricacid-induced resistance in plants, European Journal of Plant Pathology, 107: 29–37.CrossRefGoogle Scholar
  70. Jones, E. S., Liu, C.J., Gale, M.D., Hash, C.T. and Witcombe, J.R. (1995) Mapping quantitative trait loci for downy mildew resistance in pearl millet, Theoretical and Applied Genetics 91, 448–456.CrossRefGoogle Scholar
  71. Joos, H. J., Mauch-Mani, B. and Slusarenko, A. J. (1996) Molecular mapping of the Arabidopsis locus RPP11 which conditions isolate-specific hypersensitive against downy mildew in ecotype RLD, Theoretical and Applied Genetics 92, 281–284.CrossRefGoogle Scholar
  72. Judelson, H. S. and Michelmore, R. W. (1992) Temperature and genotype interactions in the expression of host resistance in lettuce downy mildew, Physiological and Molecular Plant Pathology 40, 233–245.CrossRefGoogle Scholar
  73. Kamoun, S., Young, M., Glascock, C.B. and Tyler, B. (1993) Extracellular protein elicitors from Phytophthora: Host-specificity and induction of resistance to bacterial and fungal phytopathogens, Molecular Plant-Microbe Interactions 6, 15–25.Google Scholar
  74. Kamoun, S., Young, M., Förster, H., Coffey, M.D. and Tyler, B.T. (1994) Potential role of elicitins in the interaction between Phytophthora species and tobacco, Applied and Environmental Biology 60, 1593–1598.Google Scholar
  75. Kobe, B. and Deisenhofer, J. (1995) A structural basis of the interactions between leucine-rich repeats and protein ligands, Nature 374, 183–186.PubMedCrossRefGoogle Scholar
  76. Koch, E. and Slusarenko, A. (1990) Arabidopsis is susceptible to infection by a downy mildew fungus Plant Cell 2, 437–45.PubMedCrossRefGoogle Scholar
  77. Kozlowski, G., Buchala, A. and Métraux, J.-P. (1998) Methyl jasmonate protects Norway spruce (Picea abies L. Karst.) seedlings against Pythium ultimum Trow, Physiological and Molecular Plant Pathology 55, 53–58.Google Scholar
  78. Kuc, J. (1995) Phytoalexins, stress metabolism, and disease resistance in plants, Annual Review of Phytopathology 33, 275–297.CrossRefPubMedGoogle Scholar
  79. Kumar, V. U., Meera, M.S., Hindumathy, C.K. and Shetty, H.S. (1993) Induced systemic resistance protects pearl millet plants against downy mildew disease due to Sclerospora graminicola, Crop Protection 12, 458–462.CrossRefGoogle Scholar
  80. Kumar, V. U., Shishupala, S., Shetty, H. S. and Umesh-Kumar, S. (1993) Serological evidence for the occurrence of races in Sclerospora graminicola and identification of a race-specific surface protein involved in host recognition, Canadian Journal of Botany 71, 1467–1471.Google Scholar
  81. Langcake, P. and Pryce, R.J. (1976) The production of trans-resveratrol by Vitis vinifera and other members of the Vitaceae as a response to infection or injury, Physiological Plant Pathology 9, 77–86.Google Scholar
  82. Lawrence, G. J., Finnegan, E.J., Ayliffe, M.A. and Ellis, J.G. (1995) The L6 gene for flax rust resistance is related to the Arabidopsis bacterial resistance gene RPS2 and the tobacco viral resistance gene N, The Plant Cell 7, 1195–1206.PubMedGoogle Scholar
  83. Lawton, K., Friedrich, L., Hunt, M., Weymann, K., Staub, T., Kessmann, H. and Ryals, J. (1996) Benzothiadiazole induces disease resistance in Arabidopsis by activation of the systemic acquired resistance signal transduction pathway, Plant Journal 10, 71–82.PubMedCrossRefGoogle Scholar
  84. Lebeda, A. and Dolezal, K. (1995) Peroxidase isozyme polymorphism as a potential marker for detection of field resistance in Cucumis sativus to cucumber downy mildew (Pseudoperonospora cubensis (Berk. et Curt.) Rostov.), Zeitschrift Fuer Pflanzenkrankheiten und Pflanzenschutz 102, 467–471.Google Scholar
  85. Lebeda, A. R. K. (1991) Variation in the early development of Bremia lactucae on lettuce cultivars with different levels of field resistance, Plant Pathology 40, 232–237.Google Scholar
  86. Leonards-Schippers, C., Gieffers, W., Schafer-Pregel, R., Ritter, E., Knapp, S.J., Salamini, F. and Gebhardt, C. (1994) Quantitative resistance to Phytophthora infestans in potato: a case study for mapping in an allogamous plant species, Genetics 137, 67–77.PubMedGoogle Scholar
  87. Madamanchi, N. R. and Kuc, J. (1991) Induced systemic resistance in plants, in G. T. Cole, Hoch, H.C. (ed.) The fungal spore and disease initiation in plants and animals, Plenum Press New York, pp. 347–362.Google Scholar
  88. Malamy, J., Carr, J.P., Klessig, D.F. and Raskin, I. (1990) Salicylic acid, a likely endogenous signal in the resistance response of tobacco to viral infection, Science 250, 1002–1004.PubMedGoogle Scholar
  89. Mansfield, J.W. (2000) Antimicrobial compounds and resistance. The role of phyoalexins and phytoanticipins, in A. Slusarenko, R.S.S. Fraser, and L.C. van Loon (eds) Mechanisms of resistance to plant diseases, Kluwer Academic Publishers, pp. 325–370.Google Scholar
  90. Mauch-Mani, B., Schwinn, F.J. and Guggenheim, R. (1989) Early infection stages of the downy mildew fungi Sclerospora graminicola and Peronosclerospora sorghi in plants and cell cultures, Mycological Research 92,445–452.CrossRefGoogle Scholar
  91. Mauch-Mani, B., Croft, K.P.C. and Slusarenko. A.J. (1993) The genetic basis of resistance of Arabidopsis thaliana (L.) Heynh. to Peronospora parasitica, in K. Davis, Hammerschmidt, R. (ed.) Arabidopsis as a model for plant-pathogen interactions, American Phytopathological Society Press St Paul, MN, pp. 5–20.Google Scholar
  92. Mauch-Mani, B. and Métraux, J.-P. (1998) Salicylic acid and systemic acquired resistance to pathogen attack, Annals of Botany 82, 535–540CrossRefGoogle Scholar
  93. Mauch-Mani, B. and Slusarenko, A. J. (1996) Production of salicylic acid precursors is a major function of phenylalanine ammonia-lyase in the resistance of Arabidopsis to Peronospora parasitica, Plant Cell 8, 203–212.PubMedCrossRefGoogle Scholar
  94. Mauch-Mani, B. and Slusarenko, A. J. (1994) Systemic acquired resistance in Arabidopsis thaliana induced by a predisposing infection with a pathogenic isolate of Fusarium oxysporum, Molecular Plant Microbe Interactions 7, 378–383.Google Scholar
  95. McDowell, J. M., Dhandaydham, M., Long, T. A., Aarts, M. G. M., Goff, S., Holub, E. B. and Dangl, J. L. (1998) Intragenic recombination and diversifying selection contribute to the evolution of downy mildew resistance at the RPP8 locus of Arabidopsis, The Plant Cell 10, 1861–1874.PubMedGoogle Scholar
  96. McKinney, H. H. and Clayton, E.E. (1945) Genotype and temperature in relation to symptoms caused in Nicotiana by the mosaic virus, Journal of Heredity 36, 323–331.Google Scholar
  97. Métraux, J.-P., Signer, H., Ryals, J., Ward, E., Wyss-Benz, M., Gaudin, J., Raschdorf, K., Schmid, E., Blum, W. and Inverardi, B. (1990) Increase in salicylic acid at the onset of systemic acquired resistance in cucumber, Science 250, 1004–1006.PubMedGoogle Scholar
  98. Métraux, J.-P., Ahl Goy, P., Staub, T., Speich, J., Steinemann, A., Ryals, J., Ward, E. (1991) Induced systemic resistance in cucumber in response to 2,6-dichloro-isonicotinic acid and pathogens, in H. Hennecke, Verma, D.P.S. (eds.) Advances in molecular genetics of plant microbe interactions, Kluwer Academic Publishers Dordrecht, pp. 432–439.Google Scholar
  99. Meyers, B. C., Chin, D.B., Shen, K.A., Sivaramakrishnan, S., Lavelle, D.O., Zhang, Z. and Michelmore, R.W. (1998) The major resistance gene cluster in lettuce is highly duplicated and spans several megabases, The Plant Cell 10, 1817–1832.PubMedGoogle Scholar
  100. Meyers, B. C., Shen, K. A., Rohani, P., Gaut, B. S. and Michelmore, R. W. (1998) Receptor-like genes in the major resistance locus of lettuce are subject to divergent selection, The Plant Cell, 1833–1846.Google Scholar
  101. Michelmore, R. W. and Meyers, B.C. (1998) Clusters of resistance genes in plants evolve by divergent selection and a birth-and-death process, Genome Research 8, 1113–11130.PubMedGoogle Scholar
  102. Michelmore, R. W. (1995). Molecular approaches to manipulation of disease resistance, Annual Review of Phytopathology 33, 393–427.CrossRefPubMedGoogle Scholar
  103. Mindrinos, M., Katagiri, F., Yu, G.L. and Ausubel, F.M. (1994) The Arabidopsis thaliana disease resistance gene RPS2 encodes a protein containing a nucleotide binding site and leucine-rich repeats, Cell 78, 1089–1099.PubMedCrossRefGoogle Scholar
  104. Morris, S. W., Vernooij, B., Titatarn, S., Starrett, M., Thomas, S., Wiltse, C. C., Frederiksen, R. A., Bhandhufalck, A., Hulbert, S. and Uknes, S. (1998) Induced resistance responses in maize, Molecular Plant-Microbe Interactions 11, 643–658.PubMedGoogle Scholar
  105. Nagarathna, K. C., Shetty, S. A., Bhat, S. G. and Shetty, H. S. (1992) The possible involvement of lipoxygenase in downy mildew resistance in pearl millet, Journal of Experimental Botany 43, 1283–1287.Google Scholar
  106. Nawrath, C. and Métraux, J.-P. (1999) Salicylic acid induction-deficient mutants of Arabidopsis express PR-2 and PR-5 and accumulate high levels of camalexin after pathogen inoculation, Plant Cell, 11, 1393–1404.PubMedCrossRefGoogle Scholar
  107. Nes, W. D. (1987) Biosynthesis and requirement for sterols in the growth and reproduction of oomycetes, in G. Fuller, Nes, W.D. (ed.) Ecology and Metabolism of Plant Lipids, American Chemical Society Washington, pp. 304–328.Google Scholar
  108. Nürnberger, T., Nennstiel, D., Hahlbrock, K. and Scheel, D. (1995) Covalent cross-linking of the Phytophthora megasperma oligopeptide elicitor to its receptor in parsley membranes, Proceedings of the National Academy of Sciences USA 92, 2338–2342.Google Scholar
  109. Nürnberger, T., Nennstiel, D., Jabs, T., Sacks, W.R., Hahlbrock, K. and Scheel, D. (1994) High affinity binding of a fungal oligopeptide elicitor to parsley plasma membranes triggers multiple defense responses, Cell 78, 449–460.PubMedGoogle Scholar
  110. Parker, J. E., Szabo, V., Staskawicz, B.J., Lister, C., Dean, C., Daniels, M.J. and Jones, J.D.G. (1993) Phenotypic characterization and molecular mapping of the Arabidopsis thaliana locus, RPP5. determining disease resistance to Peronospora parasitica, The Plant Journal 4, 821–831.CrossRefGoogle Scholar
  111. Parker, J. E., Coleman, M. J., Szabo, V., Frost, L. N., Schmidt, R., van der Biezen, E. A., Moores, T., Dean, C., Daniels, M. J. and Jones, J. D. (1997) The Arabidopsis downy mildew resistance gene RPP5 shares similarity to the toll and interleukin-1 receptors with N and L6, Plant Cell 9, 879–94.PubMedCrossRefGoogle Scholar
  112. Parker, J. E., Holub, E. B., Frost, L. N., Falk, A., Gunn, N. D. and Daniels, M. J. (1996) Characterization of eds l, a mutation in Arabidopsis suppressing resistance to Peronospora parasitica specified by several different RPP genes, Plant Cell 8, 2033–46.PubMedCrossRefGoogle Scholar
  113. Parlevliet, J. E (1992) Selecting components of partial resistance, in H. T. Stalker, Murphy, J P. (ed.) plant Breeding in the 1990s, Proceedings of the symposium on plant breeding in the 1990s, CAB International Wallingford.Google Scholar
  114. Penninckx, I. A. M. A., Eggermont, K., Terras, F.R.G., Thomma, B.P.H.J., De Samblanx, G W., Buchala, A., Méraux, J.-P., Manners, J.M. and Broekaert, W.F. (1996) Pathogen-induced systemic activation of a plant defensin gene in Arabidopsis follows a salicylic acid-independent pathway involving components of the ethylene and jasmonic acid responses, The Plant Cell 8, 2309–2323.PubMedGoogle Scholar
  115. Pfannenstiel, M. A. and Niblett, C.L. (1978) The nature of resistance of Agroticums to wheat streak mosaic virus, Phytopathology 68, 1204–1209.CrossRefGoogle Scholar
  116. Raskin, I. (1992) Role of salicylic acid in plants. Annual Review of Plant Physiology and plant Molecular Biology 43, 439–463.CrossRefGoogle Scholar
  117. Raskin, I. (1992) Salicylate, a new plant hormone, Plant Physiology 99, 799–803.PubMedGoogle Scholar
  118. Rasmussen, J. B., Hammerschmidt, R. and Zook, M.N. (1991) Systemic induction of salicylic acid accumulation in cucumber after inoculation with Pseudomonas syringae pv syringae. Plant Physiology 97, 1342–1347PubMedGoogle Scholar
  119. Reuveni, R., Shimoni M. and Crute I. R. (1991) An association between high peroxidase activity in lettuce Lactuca sativa and field resistance to downy mildew Bremia lactucae, Journal of Phytopathology 132, 312–318.Google Scholar
  120. Ricci, P., Bonnet, P., Huet, J.C., Sallantin, M., Beauvais-Cante, F., Bruneteau, M., Billard, V., Michel, G. and Pernollet, J.C. (1989) Structure and activity of proteins from pathogenic Phytophthora eliciting necrosis and acquired resistance in tobacco. European Journal of Biochemistry 183, 555–563.PubMedCrossRefGoogle Scholar
  121. Robinson, R. A. (1969) Disease resistance terminology, Review of Applied Mycology 48, 593–606.Google Scholar
  122. Ross, A. F. (1966) Systemic effects of local lesion formation, in A. B. R. Beemster, Dijkstra, J. (ed.) Viruses of Plants, North-Holland Publishing Amsterdam, pp. 127–150.Google Scholar
  123. Ryals, J. A., Weymann, K., Lawton, K., Friedrich, L., Ellis, D., Steiner, H.-Y., Johnson, J., Delaney, T.P., Jesse, T., Vos, P. and Uknes, S. (1997) The Arabidopsis N I M I protein shows homology to the mammalian transcription factor inhibitor IKB, The Plant Cell 9, 425–439.PubMedGoogle Scholar
  124. Ryals, J. A., Neuenschwander, U.H., Willits, M.G., Molina, A., Steiner, H.-Y. and Hunt, M.D. (1996) Systemic acquired resistance, The Plant Cell 8, 1809–1819.PubMedGoogle Scholar
  125. Schneider, M., Schweizer, P., Meuwly, P. and Métraux, J.-P. (1996) Systemic acquired resistance in plants, International Review of Cytology 168, 303–340.CrossRefGoogle Scholar
  126. Schroeder, W. T., Provvidenti, R., Barton, D.W. and Mishanec, W. (1965) Temperature differentiation of genotypes for BV2 resistance in Pisum sativum, Phytopathology 56, 113–117.Google Scholar
  127. Shah, J., Tsui, F. and Klessig, D.F. (1997) Charaterization of a salicylic acid insensitive mutant (sail) of Arabidopsis thaliana, identified in a selective screen utilizing the SA-inducible expression of the tms 2 gene, Molecular Plant-Microbe Interactions 10, 69–78.PubMedGoogle Scholar
  128. Shen, K. K, Meyers, B.C., Islam-Faridi, M.N., Chin, D.B., Stelly. D.M. and Michelmore, R.W. (1998) Resistance gene candidates identified by PCR with degenerate oligonucleotide primers map to clusters of resistance genes in lettuce, Molecular plant-Microbe Interactions 11, 815–823.PubMedGoogle Scholar
  129. Siedow, J. N. (1991) Plant lipoxygenase: structure and function, Annual Review of Plant Physiology and Plant Molecular Biology 42, 145–188.CrossRefGoogle Scholar
  130. Stusarenko, A. J. and Mauch-Mani. B. (1991) Downy mildew of Arabidopsis thaliana caused by Peronosporaparasitica: a model system for the investigation of the molecular biology of host-pathogen interactions, in H. Hennecke, Verma, D.P.S.i (eds.) Advances in molecular genetics of plant microbe interactions, Kluwer Academic Publishers Dordrecht, pp. 280–283.Google Scholar
  131. Slusarenko, A. J. (1996) The role of lipoxygenase in resistance of plants to infection, in G. J. Piazza, (ed.) Lipoxygenase and lipoxygenase pathway enzymes, AOCS Press Champaign, I L, pp. 176–197.Google Scholar
  132. Spencer, D. M. (1981) in D. M. Spencer (ed.) The Downy Mildews, London, Academic Press New York, San Francisco.Google Scholar
  133. Spring, O., Benz, A. and Faust, V. (1991) Impact of downy mildew (Plasmopara halstedii) infection on the development and metabolism of sunflower, Journal of Plant Disease and Protection 98, 597–604Google Scholar
  134. Stanghellini, M. E., Rasmussen, S.L. and Vandermark, G.J. (1993) Relationship of callose deposition to resistance of lettuce to Plasmopara lactucae-radicis, Phytopathology 83, 1498–1501.Google Scholar
  135. Stegmark, R. (1991) Comparison of different inoculation techniques to screen resistance of pea lines to downy mildew, Journal of Phytopathology 133, 209–215.Google Scholar
  136. Stegmark, R. (1992) Diallel analysis of the inheritance of partial resistance to downy mildew in peas, Plant Breeding 108, 111–117.Google Scholar
  137. Stegmark, R. (1994) Downy mildew on peas (Peronospora viciae f. sp. pisi) Agronomie 14, 641–647.Google Scholar
  138. Stegmark, R. (1991) Selection for partial resistance to downy mildew in peas by means of greenhouse tests, Euphytica 53, 87–96.CrossRefGoogle Scholar
  139. Stegmark, R. (1990) Variation of virulence among Scandinavian isolates of Peronospora viciae fsp pisi pea downy mildew and responses of pea genotypes, Plant Pathology 39, 118–124.Google Scholar
  140. Sticher, L., Mauch-Mani, B. and Métraux, J.-P. (1997) Systemic acquired resistance. Annual Review of Phytopathology 35, 235–270.PubMedCrossRefGoogle Scholar
  141. Stolle, K., Zook, M., Shain, L., Hebard, F. and Kuc, J. (1988) Restricted colonization of Peronospora tabacina and phytoalexin accumulation in immunized tobacco leaves, Phytopathology 78, 1193–1197.Google Scholar
  142. Tal, B. and Robeson, D.J. (1986) The induction, by fungal inoculation, of ayapin and scopoletin biosynthesis in Helianthus annuus, Phytochemistry 25, 77–79.Google Scholar
  143. Thomma, B. P. H. J., Eggermont, K., Penninckx, I.A.M.A., Mauch-Mani, B., Vogelsang, R., Cammue, B.P.A. and Broekaert, W.F. (1998) Separate jasmonate-dependent and salicylate-dcpendent defense-response pathways in Arabidopsis are essential for resistance to distinct microbial pathogens, Proceedings of the National Academy of Science USA 95, 15107–15111.CrossRefGoogle Scholar
  144. Ton, J., Van Pelt, J.A., Van Loon, L.C. and Pieterse, C.M.J. (2001) Differential effectiveness of salicylate-dependent, and jasmonate-and ethylene-dependent induced resistance in Arabidopsis. Molecular Plant Microbe Interactions, in press.Google Scholar
  145. Tör, M., Holub, E. B., Brose, E., Musker, R., Gunn, N., Can, C., Crute, I. R. and Beynon J. L. (1994) Map positions of three loci in Arabidopsis thaliana associated with isolate-specific recognition of Peronospora parasitica (Downy Mildew), Molecular Plant-Microbe Interactions 7, 214–222.Google Scholar
  146. Tsuji, J., Jackson, E.P., Gage, D.A., Hammerschmidt, R. and Somerville, S.C. (1992) Phytoalexin accumulation in Arabidopsis thaliana during the hypersensitive response to Pseudomonas syringae pv syringae. Plant Physiology 98, 1304–1309.PubMedCrossRefGoogle Scholar
  147. Uknes, S., Mauch-Mani, B., Moyer, M., Potter, S., Williams, S., Dincher, S., Chandler, D., Slusarenko, A., Ward, E. and Ryals, J. (1992) Acquired resistance in Arabidopsis, The Plant Cell 4, 645–656.PubMedGoogle Scholar
  148. Uknes, S., Winter, A, Delaney, T., Vernoij, B., Friedrich, L., Morse, A., Potter, S., Williams, S., Ward, E. and Ryals, J. (1993) Biological induction of systemic acquired resistance in Arabidopsis, Molecular Plant-Microbe Interactions 6, 692–698.Google Scholar
  149. Van Loon, L. C. (1997) Induced resistance in plants and the role of pathogenesis-related proteins, European Journal of Plant Pathology 103, 753–765Google Scholar
  150. Van Loon, L. C. and van Kammen, A. (1970) Polyacrylamide disc electrophoresis of the soluble leaf proteins from Nicotiana tabacum var “Samsun” and “Samsun NN” II. Changes in protein constitution after infection with tobacco mosaic virus, Virology 40, 199–211Google Scholar
  151. Vijayan, P., Shockey, J., Lévesque, C.A., Cook. R.J. and Browse, J. (1998). A role for jasmonate in pathogen defense of Arabidopsis, Proceedings of the National Academy of Science USA 95, 7209–7214.CrossRefGoogle Scholar
  152. Ward, E. R., Uknes, S.J., Williams, S.C., Dincher, S.S., Wiederhold, D. L., Alexander, D.C., Ahl-Goy, P., Métraux, J.-P. and Ryals, J.A. (1991) Coordinate gene activity in response to agents that induce systemic acquired resistance, The Plant Cell 3, 1085–1094.PubMedGoogle Scholar
  153. Warren, R F., Henk, A., Mowery, P., Holub, E. and Innes, R.W. (1998) A mutation within the leucine-rich repeat domain of the Arabidopsis disease resistance gene RPS5 partially suppresses multiple bacterial and downy mildew resistance genes, The Plant Cell 10, 1439–1452.PubMedGoogle Scholar
  154. Weymann, K., Hunt, M., Uknes, S., Neuenschmander. U., Lawton, K., Steiner. H.Y. and Ryals, J. (1995) Suppression and restoration of lesion formation in Arabidopsis lsd mutants, Plant Cell 7, 2013–2022PubMedCrossRefGoogle Scholar
  155. White, R. (1979) Acetyl salicylic acid (aspirin) induces resistance to tobacco mosaic virus in tobacco, Virology 99, 410–412.CrossRefPubMedGoogle Scholar
  156. Whitham, S., Dinesh-Kumar, S.P., Choi, D., Hehl, R., Corr, C. and Baker, B. (1994) The product of the tobacco mosaic resistance gene N: similarity to Toll and the interleukin-1 receptor, Cell 78. 1101–1115.PubMedCrossRefGoogle Scholar
  157. Woods, A. M., Faggs, J. and Mansfield, J.W. (1988) Fungal development and irreversible membrane damage in cells of Lactuca sativa undergoing the hypersensitive reaction to the downy mildew fungus Bremia lactucae. Physiological and Molecular Plant Pathology 32, 483–498Google Scholar
  158. Xie, D.-X., Feys, B.F., James. S., Nieto-rostro. M. and Turner, J.G. (1998) COI1: An Arabidopsis gene required for jasmonate-regulated defense and fertility. Science 280, 1091–1094.PubMedGoogle Scholar
  159. Yalpani, N., Silverman, P., Wilson, T.M.A., Kleier, D.A. and Raskin. I. (1991) Salicylic acid is a systemic signal and an inducer of pathogenesis-related proteins in virus-infected tobacco. The Plant Cell 3, 809–818PubMedGoogle Scholar
  160. Ye, X. S., Jarlfors, U., Tuzun, S., Pan, S.Q. and Kuc, J. (1991) Biochemical changes in cell walls and cellular responses of tobacco leaves related in systemic resistance to blue mold inducted by tobacco mosaic virus, Canadian Journal of Botany 70, 49–57.Google Scholar
  161. Ye, X. S., Pan, S.Q. and Kuc, J. (1989) Pathogenesis-related proteins and systemic resistance to blue mold and tobacco mosaic virus induced by tobacco mosaic virus, Physiological and Molecular Plant Pathology 35, 161–175.CrossRefGoogle Scholar
  162. Yu, I. C., Perker, J. and Bent, A. F (1998) Gene-for-gene disease resistance without the hypersensitive response in Arabidopsis dnd1 mutant, Proceedings of the National Academy of Science USA 95, 7819–7824.Google Scholar
  163. Yu, L. M. (1995) Elicitins from Phylophthora and basic resistance in tobacco. Proceedings of the National Academy of Science USA 92, 4088–4094Google Scholar
  164. Yuen, J.E. and Lorbeer, J.W. (1984) Field resistance of crisphead lettuce to Bremia lactucae, Phytopathology 74, 149–152CrossRefGoogle Scholar
  165. Zhou, N., Tootle, T.L., Tsui, F., Klessig. D.F and Glazebrook, J. (1998) PAD4 functions upstream from salicylic acid to control defense responses in Arabidopsis, The Plant Cell 10, 1021–1030PubMedGoogle Scholar
  166. Zimmerli, L., Jakab, G., M’traux, J.P. and Mauch-Mani, B. (2000) Potentiation of pathogen-specific defense mechanisms in Arabidopsis by beta-aminobutyric acid, Proceedings of the National Academy of Science USA 97:12920–12925CrossRefGoogle Scholar
  167. Zinkernagel, V. (1986) Untersuchungen zur Anfalligkeit und Resistenz von Kopfsalat (Lactuca sativa) gegen falschen Mehltau (Bremia lactucae) III Peroxidase-, peroxidatische Katalase-and Polyphenoloxidase-Aktivitäten, Journal of Phytopathology 115, 257–266Google Scholar

Copyright information

© Kluwer Academic Publishers 2002

Authors and Affiliations

  • B. Mauch-Mani
    • 1
  1. 1.Institute of BotanyUniversity of NeuchâtelNeuchâtelSwitzerland

Personalised recommendations