Skip to main content

Heterochromatin-Associated Protein 1, HP1Hsα, in Breast Cancer Invasion and Metastasis

  • Chapter
Cancer Metastasis — Related Genes

Part of the book series: Cancer Metastasis — Biology and Treatment ((CMBT,volume 3))

  • 177 Accesses

Abstract

Heterochromatin has repressive effects on euchromatic gene expression. The mechanisms contributing to gene silencing are not known, however silencing has been shown to be modulated in part by heterochromatin-associated protein 1, HP1Hsα. We have identified a reduction in HP1Hsα expression in invasive/metastatic human breast cancer cell lines and in tumor cells from distant metastases. Furthermore, HP1Hsα transfected invasive/metastatic breast cancer cells show a reduction in the invasive phenotype indicating that HP1Hsα is involved in modulating specific biological activities in the metastatic cascade. Here, we discuss the role of heterochromatin and HP1Hsα expression in breast cancer invasion and metastasis with regard to gene silencing, chromatin packaging, and nuclear architecture. In addition, we introduce working models for mechanisms of HP1Hsα function that will be addressed with future studies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Weiler KS, Wakimoto BT. Heterochromatin and gene expression in Drosophila. Ann. Rev. Gen. 29: 577–605, 1995.

    Article  CAS  Google Scholar 

  2. Hennig W. Heterochromatin. Chromosoma. 108: 1–9, 1999.

    Article  PubMed  CAS  Google Scholar 

  3. Klein CB, Costa M. DNA methylation, heterochromatin, and epigenetic carcinogens. Mutation Res. 386: 163–180, 1997.

    PubMed  CAS  Google Scholar 

  4. Riggs AD, Pfeifer GP. X-chromosome inactivation and cell memory. Trends Genet. 8: 169–174, 1992.

    PubMed  CAS  Google Scholar 

  5. Lyon MF. X-chromosome inactivation: a repeat hypothesis. Cytogenet. Cell. Genet. 80: 133–137, 1998.

    Article  PubMed  CAS  Google Scholar 

  6. Brown PH, Lippman SM. Chemoprevention in breast cancer. Breast Can. Res. Treat. 62: 1–17, 2000.

    CAS  Google Scholar 

  7. Baak JP, Van Dop H, Kurver PH, Hermans J. The value of morphometry to classic prognisticators in breast cancer. Cancer. 56: 374–.82, 1985.

    PubMed  CAS  Google Scholar 

  8. Stenkvist B, Bengtsson E, Dahlqvist B, Eklund G, Eriksson O, Jarkrans T, Nordin B. Predicting breast cancer recurrence. Cancer. 50: 2884–2893, 1982.

    PubMed  CAS  Google Scholar 

  9. Komitowski DD, Hart MM, Janson CP. Chromatin organization and breast cancer prognosis. Cancer. 72: 1239–1246, 1993.

    PubMed  CAS  Google Scholar 

  10. Aubele M, Auer G, Falkmer U, Voss A, Rodenacker K, Jütting U, Höfler H. Identification of a low-risk group of stage I breast cancer patients by cytometrically assessed DNA and nuclear texture parameters. J. Pathol. 177: 377–384, 1995.

    Article  PubMed  CAS  Google Scholar 

  11. Komitowski D, Janson C. Quantitative features of chromatin structure in the prognosis of breast cancer. Cancer. 65: 2725–2730, 1990.

    PubMed  CAS  Google Scholar 

  12. Umbricht C, Oberholzer M, Gschwind R, Christen H, Torhorst J. Prognostic significance (relapse,non-relapse) of nuclear shape parameters in lymph node negative breast cancer. Anal. Cell. Pathol. 1: 11–23, 1989.

    PubMed  CAS  Google Scholar 

  13. Weyn B, van de Wouwer G, van Daele A, Scheunders P, van Dyck D, van Marck E, Jacob W. Automated breast tumor diagnosis and grading based on wavelet chromatin texture description. Cytometry. 33: 32–40, 1998.

    Article  PubMed  CAS  Google Scholar 

  14. Larsimont D, Kiss R, d’Olne D, de Launoit Y, Mattheiem W, Paridaens R, Pasteels, JL, Gompel C. Correlation between nuclear cytomophometric parameters and estrogen receptor levels in breast cancer. Cancer. 63: 2162–2168, 1989.

    PubMed  CAS  Google Scholar 

  15. Dutrillaux B, Gerbault-Seureau M, Zafrani B. Characterization of chromosomal anomalies in human breast cancer: a comparison of 30 paradiploid cases with few chromosome changes. Cancer Genet. Cytogenet. 49: 203–217, 1990.

    Article  PubMed  CAS  Google Scholar 

  16. Adhvaryu SG, Rawal UM. C-band heterochromatin variants in individuals with neoplastic disorders: carcinoma of breast and ovary. Neoplasma. 38: 379–384, 1991.

    PubMed  CAS  Google Scholar 

  17. Atkin NB, Brito-Babapulle V. Heterochromatin polymorphism and human cancer. Cancer Genet. Cytogenet. 3: 261–272, 1981.

    PubMed  CAS  Google Scholar 

  18. Greenough RB. Varying degrees of malignancy in cancer of the breast. Cancer Res. 9: 453–463, 1925.

    Google Scholar 

  19. Doudkine A, Macaulay M, Poulin N, Palcic B. Nuclear texture measurements in image cytometry. Pathologica. 87: 286–299, 1995.

    PubMed  CAS  Google Scholar 

  20. Berger R, Bernheim A, Kristoffersson U, Mitelman F, Olsson H. C-band heteromorphism in breast cancer patients. Cancer Genet. Cytogenet. 18: 37–42, 1985.

    Article  PubMed  CAS  Google Scholar 

  21. Sivakumaran, TA, Ghose S, Kumar H, Singha U, Kucheria K. Absence of pericentromeric heteorchromatin (9qh-) in a patient with bilateral retinoblastoma. Acta Genet. Med. Gemellol. 46: 193–198, 1977.

    Google Scholar 

  22. Kendall FM, Wu CT, Giaretti W, Nicolini CA. Multiparameter geometric and densitometric analysis of the G0-G1 transition of WI-38 cells. J. Histochem. Cytochem. 7: 724–729, 1977.

    Google Scholar 

  23. Losa GA, Graber R, Baumann G, Nonnenmacher TF. Steroid hormones modify nuclear heterochromatin structure and plasma membrane enzyme of MCF-7 cells. A combined fractal, electron microscopical and enzymatic analysis. Eur. J. Histochem. 42: 21–29, 1998.

    PubMed  CAS  Google Scholar 

  24. Davie JR, Samuel SK, Spencer VA, Holth LT, Chadee DN, Peltier CP, Sun JM, Chen HY, Wright JA. Organization of chromatin in cancer cells: role of signalling pathways. Biochem. Cell Biol. 77: 265–275, 1999.

    Article  PubMed  CAS  Google Scholar 

  25. Nickerson JA. Nuclear dreams: the malignant alteration of nuclear architecture. J. Cell. Biochem. 70: 172–180, 1998.

    Article  PubMed  CAS  Google Scholar 

  26. Pienta KJ, Ward WS. An unstable nuclear matrix may contribute to genetic instability. Med. Hypotheses. 42: 45–52, 1994.

    Article  PubMed  CAS  Google Scholar 

  27. Boyer O, Zhao JC, Cohen JL, Depetris D, Yagello M, Lejeune L, Burel S, Mattei MG, Klatzmann D. Position-dependent variegation of a CD4 minigene with targeted expression to mature CD4+ T cells. J. Immunol. 159: 3383–3390, 1997.

    PubMed  CAS  Google Scholar 

  28. Muller HJ. Types of visible variations induced by X-rays in Drosophila. J. Genetics. 22: 299–335, 1930.

    Google Scholar 

  29. Wallrath LL. Unfolding the mysteries of heterochromatin. Curr. Opin. Gen. Dev. 8: 147–153, 1998.

    CAS  Google Scholar 

  30. Eissenberg JC, Elgin SCR. The HP1 protein family: getting a grip on chromatin. Curr. Opin. Gen. Dev. 10: 204–210, 2000.

    CAS  Google Scholar 

  31. James TC, Elgin SCR. Identification of a nonhistone chromosomal protein associated with heterochromatin in Drosophila melanogaster and its gene. Mol. Cell. Biol. 6: 3862–3872,1986.

    PubMed  CAS  Google Scholar 

  32. Singh PB, Miller JR, Pearce J, Kothary R, Burton RD, Paro R, James TC, Gaunt SJ. A sequence motif found in a Drosophila heterochromatin protein is conserved in animals and plants. Nucl. Acids Res. 19: 789–794, 1991.

    Article  PubMed  CAS  Google Scholar 

  33. Aasland R, Stewart AF. The chromo shadow domain, a second chromo domain in heterochromatin-binding protein 1, HP1. Nucl. Acids Res. 23: 3168–3173, 1995.

    PubMed  CAS  Google Scholar 

  34. Platero JS, Hartnett T, Eissenberg JC. Functional analysis of the chromo domain of HP1. EMBO J. 14: 3977–3986, 1995.

    PubMed  CAS  Google Scholar 

  35. Powers JA, Eissenberg JC. Overlapping domains of the heterochromatin-associated protein HP1 mediate nuclear localization and heterochromatin binding. J. Cell Biol. 120: 291–299, 1993.

    Article  PubMed  CAS  Google Scholar 

  36. Cowieson NP, Partidge JF, Allshire RC, McLaughlin PJ. Dimerisation of a chromo shadow domain and distinctions from the chromodomain as revealed by structural analysis. Curr. Biol. 10: 517–525, 2000.

    Article  PubMed  CAS  Google Scholar 

  37. Akhtar A, Zink D, Becker PB. Chromodomains are protein-RNA interaction modules. Nature. 407: 405–409.

    Google Scholar 

  38. Kellum R, Raff JW, Alberts BM. Heterochromatin protein 1 distribution during development and during the cell cycle in Drosophila embryos. J. Cell Sci. 108: 1407–1418, 1995.

    PubMed  CAS  Google Scholar 

  39. James TC, Eissenberg JC, Craig C, Dietrich V, Hobson A, Elgin SCR. Distribtuion patterns of HP1, a heterochromatin-associated nonhistone chromosomal protein of Drosophila. Eur. J. Cell Biol. 50: 170–180, 1989.

    PubMed  CAS  Google Scholar 

  40. Lu BY, Ma J, Eissenberg JC. Developmental regulation of heterochromatin-mediated gene silencing in Drosophila. Development. 125: 2223–2234, 1998.

    PubMed  CAS  Google Scholar 

  41. Eissenberg JC, James TC, Foster-Hartnett DM, Hartnett T, Ngan, V, Elgin SCR. Mutation in a heterochromtian-specific chromosomal protein is associated with suppression of position-effect variegation in Drosophila melanogaster. Proc. Natl. Acad. Sci. USA. 87: 9923–9927, 1990.

    PubMed  CAS  Google Scholar 

  42. Cryderman DE, Cuaycong MH, Elgin SCR, Wallrath LL. Characterization of sequences associated with position-effect variegation at pericentric sites in Drosophila heterochromatin. Chromosoma. 107: 277–285, 1998.

    Article  PubMed  CAS  Google Scholar 

  43. Eissenberg JC, Hartnett T. A heat shock-activated cDNA rescues the recessive lethality of mutations in the heterochromatin-associated protein HP1 of Drosophila melanogaster. Mol. Gen. Genet. 240: 333–338, 1993.

    PubMed  CAS  Google Scholar 

  44. Eissenberg JC, Morris GD, Reuter G, Hartnett T. The heterochromatin-associated protein HP-1 is an essential protein in Drosophila with dosage-dependent effects on position-effect variegation. Genetics. 131: 345–352, 1992.

    PubMed  CAS  Google Scholar 

  45. Locke J, Kotarski MA, Tartof KD. Dosage-dependent modifiers of position effect variegation in Drosophila and a mass action model that explains their effect. Genetics. 120: 181–198, 1988.

    PubMed  CAS  Google Scholar 

  46. Le Douarin B, Nielsen AL, Garnier JM, Ichinose H, Jeanmougin F, Losson R, Chambon P. A possible involvement of TIFlα and TIFlβ in the epigenetic control of transcription by nuclear receptors. EMBO J. 15: 6701–6715, 1996.

    PubMed  Google Scholar 

  47. Peterson K, Wang G, Horsley D, Richardson JC, Sapienza C, Latham KE, Singh PB. The M31 gene has a complex developmentally regulated expression profile and may encode alternative protein products that possess diverse subcellular localisaton patterns. J. Exp. Zoology. 280: 288–303, 1998.

    CAS  Google Scholar 

  48. Nicol L, Jeppesen P. Human autoimmune sera recognize a conserved 26 kD protein associated with mammalian heterochromatin that is homologous to heterochromatin protein 1 of Drosophila. Chromosome Res. 2: 245–253, 1994.

    Article  PubMed  CAS  Google Scholar 

  49. Wreggett KA, Hill F, James PS, Hutchings A, Butcher GW, Singh PB. A mammalian homologue of Drosophila heterochromatin protein 1 (HP1) is a component of constitutive heterochromatin. Cytogenet. Cell. Genet. 66: 99–103, 1994.

    Article  PubMed  CAS  Google Scholar 

  50. Horsley D, Hutchings A, Butcher GW, Singh PB. M32, a murine homologue of Drosophila heterochromatin protein 1 (HP1), localizes to euchromatin within interphase nuclei and is largely excluded from constitutive heterochromatin. Cytogenet. Cell. Genet. 73: 308–311, 1996.

    PubMed  CAS  Google Scholar 

  51. Miyado K, Sato M, Kimura M. Differential expression of mRNAs for M31 and M32, murine homologuesof Drosophila heterochromatin protein 1 (HP1), during murine embryogenesis. Biochem. Mol. Biol. Intl. 44: 1051–1058, 1998.

    CAS  Google Scholar 

  52. Brasher SV, Smith BO, Fogh RH, Nietlispach D, Thiru A, Nielsen PR, Broadhurst RW, Ball LJ, Murzina NV, Laue ED. The structure of mouse HP1 suggests a unique mode of single peptide recognition by the shadow chromo domain dimmer. EMBO J. 19: 1587–1597, 2000.

    Article  PubMed  CAS  Google Scholar 

  53. Ye Q, Worman HJ. Interaction between an integral protein of the nuclear envelope inner membrane and human chromodomain proteins homologous to Drosophila HP1. J. Biol. Chem. 271: 14653–14656, 1996.

    PubMed  CAS  Google Scholar 

  54. Saunder WS, Chue C, Goebl M, Craig C, Clark RF, Powers JA, Eissenberg JC, Elgin SC, Rothfield NF, Earnshaw WC. Molecular cloning of a human homologue of Drosophila heterochromatin protein HP1 using anti-centromere autoantibodies with anti-chromo specificity. J. Cell Sci. 104: 573–582, 1993.

    Google Scholar 

  55. Furuta K, Chan EKL, Kiyosawa K, Reimer G, Luderschmidt C, Tan EM. Heterochromatin protein HP1Hsβ (p25β and its localization with centromeres in mitosis. Chromosoma. 106: 11–19, 1997.

    Article  PubMed  CAS  Google Scholar 

  56. Furuta K, Hildebrandt B, Matsuoka S, Kiyosawa K, Reimer G, Luderschmidt C, Chan EKL, Tan EM. Immunological characterization of heterochromatin protein p25β autoantibodies and relationship with centromere autoantibodies and pulmonary fibrosis in systemic scleroderma. J. Mol. Med. 76: 54–60, 1998.

    Article  PubMed  CAS  Google Scholar 

  57. Muro Y, Yamada T, Iwai T, Sugimoto K. Epitope analysis of chromo antigen and clinical features in a subset of patients with anti-centromere antibodies. Mol. Biol. Reports. 23: 147–151, 1996.

    CAS  Google Scholar 

  58. Minc E, Allory Y, Worman HJ, Courvalin JC, Buendia B. Localization and phosphorylation of HP1 proteins during the cell cycle in mammalian cells. Chromosoma. 108: 220–234, 1999.

    Article  PubMed  CAS  Google Scholar 

  59. Nielsen AL, Ortiz JA, You J, Oulad-Abdelghani M, Khechumian R, Gansmuller A, Chambon P, Losson R. Interaction with members of the heterochromatin protein 1 (HP1) family and histone deacetylation are differentially involved in transcriptional silencing by members of the TIF1 family. EMBO J. 18: 6385–6395, 1999.

    Article  PubMed  CAS  Google Scholar 

  60. Ma J, Hwang KK, Worman HJ, Courvalin JC, Eissenberg JC. Expression and functional analysis of three isoforms of human heterochromatin-associated protein HP1 in Drosophila. Chromosoma. In press.

    Google Scholar 

  61. Seeler JS, Marchio A, Sitterlin D, Transy C, Dejean A. Interaction of SP100 with HP1 proteins: a link between the promyelocytic leukemia-associated nuclear bodies and the chromatin compartment. Proc. Natl. Acad. Sci. USA. 95: 7316–7321, 1998.

    Article  PubMed  CAS  Google Scholar 

  62. Lehming N, Le Saux A, Schüller J, Ptashne M. Chromatin components as part of a putative transcriptional repressing complex. Proc. Natl. Acad. Sci. USA. 95: 7322–7326, 1998.

    Article  PubMed  CAS  Google Scholar 

  63. Ye Q, Callebaut I, Pezhman, A, Courvalin JC, Worman HJ. Domain-specific interactions of human HP1-type chromodomain proteins and inner nuclear membrane protein LBR. J. Biol. Chem. 272: 14983–14989, 1997.

    PubMed  CAS  Google Scholar 

  64. Ryan RF, Schultz DC, Ayyanathan K, Singh PB, Friedman JR, Fredericks WJ, Rauscher FJ, III. KAP-1 corepressor protein interacts and colocalizes with heterochromatic and euchromatic HP1 proteins: a potential role for Krüppel-associated box-zinc finger proteins in heterochromatin-mediated gene silencing. Mol. Cell. Biol. 19: 4366–4378, 1999.

    PubMed  CAS  Google Scholar 

  65. Lechner MS, Begg GE, Speicher DW, Rauscher FJ, III. Molecular determinants for targeting heterochromatin protein 1-mediated gene silencing: direct chromoshadow domain-KAP-1 corepressor interaction is essential. Mol. Cell. Biol. 20: 6449–6465, 2000.

    Article  PubMed  CAS  Google Scholar 

  66. Murzina N, Verreault A, Laue E, Stillman B. Heterochromatin dynamics in mouse cells: interaction between chromatin assembly factor 1 and HP1 proteins. Mol. Cell. 4: 529–540, 1999.

    Article  PubMed  CAS  Google Scholar 

  67. Ainsztein AM, Kandels-Lewis SE, Mackay AM, Earnshaw WC. INCENP centromere and spindle targeting: identification of essential conserved motifs and involvement of heterochromatin protein HP1. J. Cell Biol. 143: 1763–1774, 1998.

    Article  PubMed  CAS  Google Scholar 

  68. Yamada T, Fukuda R, Himeno M, Sugimoto K. Functional domain structure of human heterochromatin protein HP1Hsα involvement of internal DNA-binding and C-terminal self-association domains in the formation of discrete dots in interphase nuclei. J. Biochem. 125: 832–837, 1999.

    PubMed  CAS  Google Scholar 

  69. Wang G, Ma A, Chow CM, Horsley D, Brown NR, Cowell IG, Singh PB. Conservation of heterochromatin protein 1 function. Mol. Cell. Biol. 20: 6970–6983, 2000.

    PubMed  CAS  Google Scholar 

  70. Festenstein R, Sharghi-Namini S, Fox M, Roderick K, Tolaini M, Norton T, Saveliev A, Kioussis D, Singh P. Heterochromatin protein 1 modifies mammalian PEV in a dose-and chromosomal-context-dependent manner. Nat. Gen. 23: 457–461, 1999.

    CAS  Google Scholar 

  71. Lu BY, Emtage PCR, Duyf BJ, Hilliker AJ, Eissenberg JC. Heterochromatin protein 1 is required for the normal expression of two heterochromatin genes in Drosophila. Genetics. 155: 699–708, 2000.

    PubMed  CAS  Google Scholar 

  72. Moustafa AS, Nicolson GL. Breast cancer metastasis-associated genes: prognostic significance and therapeutic implications. Oncology Res. 9: 505–525, 1997.

    CAS  Google Scholar 

  73. Yokota J. Tumor progression and metastasis. Carcinogenesis. 21: 497–503, 2000.

    Article  PubMed  CAS  Google Scholar 

  74. Bechmann MW, Niederacher D, Schnürch HG, Gusterson BA, Bender HG. Multistep carcinogenesis of breast cancer and tumour heterogeneity. J. Mol. Med. 75: 429–439, 1997.

    Google Scholar 

  75. Hanahan D, Weinberg RA. The hallmarks of cancer. Cell. 100: 57–70, 2000.

    Article  PubMed  CAS  Google Scholar 

  76. Stracke ML, Liotta LA. Multi-step cascade of tumor cell metastasis. In vivo. 6: 309–316, 1992.

    PubMed  CAS  Google Scholar 

  77. Woodhouse EC, Chuaqui RF, Liotta LA. General mechanisms of metastasis. Cancer. 80: 1529–1537, 1997.

    Article  PubMed  CAS  Google Scholar 

  78. Hendrix MJC, Seftor EA, Kirschmann DA, Seftor REB. Molecular biology of breast cancer metastasis: molecular expression of vascular markers by aggressive breast cancer cells. Breast Can. Res. 2: 417–422, 2000.

    CAS  Google Scholar 

  79. Kirschmann DA, Seftor EA, Nieva DRC, Mariano EA, Hendrix MJC. Differentially expressed genes associated with the metastatic phenotype in breast cancer. Breast Can. Res. Treat. 55: 127–136, 1999.

    Article  CAS  Google Scholar 

  80. Kirschmann, DA, Lininger RA, Gardner LMG, Seftor EA, Odero VA, Ainsztein AM, Earnshaw WC, Wallrath LL, Hendrix MJC. Down-regulation of HP1Hsα expression is associated with the metastatic phenotype in breast cancer. Can. Res. 60: 3359–3363, 2000.

    CAS  Google Scholar 

  81. Thompson EW, Paik S, Brunner N, Sommers CL, Zugmaier G, Clarke R, Shima TB, Torri J, Donahue S, Lippman ME, Martin GR, Dickson RB. Assocition of inceased basement membrane invsivness with absence of estrogen receptor and expressio nof vimentin in human breast cancer cell lines. J. Cell. Physiol. 150: 534–544, 1992.

    Article  PubMed  CAS  Google Scholar 

  82. Boyer B, Thiery JP. Epithelial-mesenchyme interconversion as example of epithelial plasticity. APMIS. 101: 257–268, 1993.

    Article  PubMed  CAS  Google Scholar 

  83. Fanti L, Dorer DR, Berloco M, Henikoff S, Pimpinelli S. Heterochromatin protein 1 binds transgene arrays. Chromosoma. 107: 286–292, 1998.

    Article  PubMed  CAS  Google Scholar 

  84. Margolin JF, Friedman JR, Meyer WK, Vissing H, Thiesen HJ, Rauscher FJ, III. Kruppel-associated boxes are potent transcriptional repression domains. Proc. Natl. Acad. Sci. USA. 91: 4509–4513, 1994.

    PubMed  CAS  Google Scholar 

  85. Bellefroid EJ, Poncelet DA, Lecocq PJ, Revelant O, Martial JA. The evolutionarily conserved Kruppel-associated box domain defines a subfamily of eukaryotic multifingered proteins. Proc. Natl. Acad. Sci. USA. 88: 3608–3612, 1991.

    PubMed  CAS  Google Scholar 

  86. Brown KE, Guest SS, Smale ST, Hahm K, Merkenschlager M, Fisher AG. Association of transcriptionally silent genes with Ikaros complexes at centromeric heterochromatin. Cell. 91: 845–854, 1997.

    Article  PubMed  CAS  Google Scholar 

  87. Dos Santos NR, Van Kessel AG. Chromosomal abnormalities: detection and implications for cancer development. Anticancer Res. 19: 4697–4714, 1999.

    PubMed  Google Scholar 

  88. Allshire RC, Nimmo ER, Ekwall K, Javerzat JP, Cranston G. Mutations derepressing silent centromeric domains in fission yeast disrupt chromosome segregation. Genes Dev. 9: 218–233, 1995.

    PubMed  CAS  Google Scholar 

  89. Ekwall K, Javerzat JP, Lorentz A, Schmidt H, Cranston G, Allshire R. The chromodomain protein swi6: a key component at fission yeast centromeres. Science. 269: 1429–1431, 1995.

    PubMed  CAS  Google Scholar 

  90. Lorentz A, Ostermann K, Fleck O, Schmidt H. Switching gene swi6, involved in repression of silent mating-type loci in fission yeast, encodes a homologue of chromatin-associated proteins from Drosophila and mammals. Gene. 143: 139–143, 1994.

    Article  PubMed  CAS  Google Scholar 

  91. Bosman FT. The nuclear matrix in pathology. Virchows Arch. 435: 391–399, 1999.

    Article  PubMed  CAS  Google Scholar 

  92. Berezney R. The nuclear matrix: a heuristic model for investigating genomic organization and function in the cell nucleus. J. Cell. Biochem. 47: 109–123, 1991.

    Article  PubMed  CAS  Google Scholar 

  93. Berezney R, Mortillaro MJ, Ma H, Wei X, Samarabandu J. “The nuclear matrix: a structural milieu for genomic function”. In Nuclear Matrix: Structural and Functional Organization. Berezney R, Jeon KW, Eds. San Diego, CA. Associated Press, 1995.

    Google Scholar 

  94. Pienta KJ, Getzenberg RH, Coffey DS. Cell structure and DNA organization. Crit. Rev. Eukaryotic Gene Express. 1: 355–385, 1991.

    CAS  Google Scholar 

  95. Goldberg, M, Harel A, Gruenbaum Y. The nuclear lamina: molecular organization and interaction with chromatin. Crit. Rev. Eukaryotic Gene Express. 9: 285–293, 1999.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Kluwer Academic Publishers

About this chapter

Cite this chapter

Kirschmann, D.A., Hendrix, M.J. (2002). Heterochromatin-Associated Protein 1, HP1Hsα, in Breast Cancer Invasion and Metastasis. In: Welch, D.R. (eds) Cancer Metastasis — Related Genes. Cancer Metastasis — Biology and Treatment, vol 3. Springer, Dordrecht. https://doi.org/10.1007/0-306-47821-8_9

Download citation

  • DOI: https://doi.org/10.1007/0-306-47821-8_9

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-1-4020-0522-0

  • Online ISBN: 978-0-306-47821-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics