Skip to main content

The Emerging Role for the mRNA Cap-Binding Protein, EIF-4E, in Metastatic Progression

  • Chapter
Cancer Metastasis — Related Genes

Part of the book series: Cancer Metastasis — Biology and Treatment ((CMBT,volume 3))

Summary

The successful evolution of metastases requires the interplay of numerous and diverse gene products-metalloproteases (MMP-9), adhesion factors (CD44v6), apoptosis suppressors (bcl-2), angiogenesis factors (VEGF), and proto-oncoproteins (c-myc, cyclin D1). Expression of each of these potent proteins is profoundly influenced by the activity of the mRNA cap-binding protein, eIF-4E. Indeed, eIF-4E overexpression has been shown to selectively influence a wide array of key proteins including c-myc, cyclin D1, VEGF, bFGF, CD44v6, MMP-9 and nm23. By selectively and coordinately upregulating expression of these potent proteins, enhanced eIF-4E activity, which characterizes a variety of human tumors and has been associated with malignant progression, can drive metastatic progression. As such, eIF-4E represents a potential convergence point whereby many key metastasis genes are regulated and may therefore represent a novel, compelling target for therapeutic intervention. Indeed, blocking eIF-4E activity dramatically suppresses malignancy by specifically suppressing the expression of key malignancy-related genes like cyclin D1, bFGF, VEGF and ODC (47 and references therein). Blocking eIF-4E activity has also recently been shown to induce apoptosis (109). Indeed, eIF-4E may be an attractive new therapeutic target precisely because each and every function necessary for the evolution and growth of a metastatic nodule is mediated or influenced by a gene product that is regulated translationally. The development of novel reagents to interfere with eIF-4E and translation initiation may provide a very promising alternative to current anti-cancer therapies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Vogelstein B, Kinzler KW. The multistep nature of cancer. Trends Genet. 9:138–141, 1993.

    Article  PubMed  CAS  Google Scholar 

  2. Liteplo RG, Frost P, Kerbel RS. Genetic and epigenetic aspects of tumor progression. Basic Life Sci. 33:285–305, 1985.

    PubMed  CAS  Google Scholar 

  3. Nicholson GL. Tumor cell instability, diversification, and progression to the metastatic phenotype: from oncogene to oncofetal expression. Cancer Res. 47:1473–1487, 1987.

    Google Scholar 

  4. Sager R. Expression genetics in cancer: shifting the focus from DNA to RNA. Proc. Natl. Acad. Sci. 94:952–955, 1997.

    Article  PubMed  CAS  Google Scholar 

  5. Rhoads RE, Joshi-Barve S, Rinker-Schaeffer C. Mechanism of action and regulation of protein synthesis initiation factor 4E: effects on mRNA discrimination, cellular growth rate, and oncogenesis. Prog. In Nucl. Acid Res. and Mol. Biol. 46:183–219, 1993.

    CAS  Google Scholar 

  6. Sonenberg N, Gingras AC. The mRNA 5′ cap-binding protein eIF-4E and the control of cell growth. Curr. Opin. Cell. Biol. 10:268–75, 1998.

    Article  PubMed  CAS  Google Scholar 

  7. Kozak M. Regulation of translation in eukaryotic systems. Ann. Rev. Cell. Biol. 8:197–225, 1992.

    PubMed  CAS  Google Scholar 

  8. Kozak M. An analysis of 5′-noncoding sequences from 699 vertebrate messenger RNAs. Nucleic Acid Res. 15:8125–8147, 1989.

    Google Scholar 

  9. Kozak M. An analysis of vertebrate mRNA sequences: intimations of translational control. J. Cell Biol. 115:887–903, 1991.

    Article  PubMed  CAS  Google Scholar 

  10. Lodish HF. Model for regulation of mRNA translation applied to haemoglobin synthesis. Nature (London) 251:385–388, 1974.

    Article  CAS  Google Scholar 

  11. Raught R, Gingras AC. eIF4E activity is regulated at multiple levels. Int. J. Biochem. Cell Biol. 31:43–57, 1999.

    Article  PubMed  CAS  Google Scholar 

  12. Lin TA, Kong X, Haystead TAJ, Pause A, Belsham G, Sonenberg N, Lawrence JC Jr. PHAS-1 as a link between mitogen activated protein kinase and translation initiation. Science 266:653–656, 1994.

    PubMed  CAS  Google Scholar 

  13. Pause A, Gelsham GJ, Gingras AC, Donze O, Lin TA, Lawrence JC, Sonenberg N. Insulin-dependent stimulation of protein synthesis by phosphorylation of a regulator of 5′-cap function. Nature 371:762–767, 1994.

    Article  PubMed  CAS  Google Scholar 

  14. Gingras AC, Kennedy SG, O′Leary MA, Sonenberg N, Hay N. 4E-BP1, a repressor of the mRNA translation, is phosphorylated and inactivated by the Akt (PKB) signaling pathway. Genes Dev. 12:502–513, 1998.

    PubMed  CAS  Google Scholar 

  15. Brunn GJ, Hudson CC, Sekulic A, Williams JM, Hosoi J, Houghton PJ, Lawrence JC Jr., Abraham RT. Phosphorylation of the translational repressor PHAS-1 by the mammalian target of rapamycin. Science 277: 99–101, 1997.

    Article  PubMed  CAS  Google Scholar 

  16. Hara K, Yonezawa K, Kozlowoski MT, Sugimoto T, Andrabi K, Weng QP, Kasuga M, Nishimoto I, Avruch J. Regulation of eIF-4E BP1 phosphorylation by mTOR. J. Biol. Chem. 272:26457–26463, 1997.

    PubMed  CAS  Google Scholar 

  17. Fadden P, Haystead TAJ, Lawrence JC. Identification of phosphorylation site in the translational regulator, PHAS-1, that are controlled by insulin and rapamycin in rat adipocytes. J. Biol. Chem. 272:10240–10247, 1997.

    PubMed  CAS  Google Scholar 

  18. Gingras AC, Gygi SP, Raught B, Polakiewicz RD, Abraham RT, Hoekstra MF, Aebersold R, Sonenberg N. Regulation of 4E-BP1 phosphorylation: a novel two-step mechanism. Genes Dev. 13:1422–1437, 1999.

    PubMed  CAS  Google Scholar 

  19. Haghighat A, Mader S, Pause A, Sonenberg N. Repression of cap-dependent translation by 4E-binding protein 1: competition with p220 for binding to eukaryotic initiation factor-4E. EMBO J. 14:5701–5709, 1995.

    PubMed  CAS  Google Scholar 

  20. Joshi B, Cai AL, Keiper BD, Minich WB, Menlez R, Beach C, Stepinski J, Stolarski R, Darzykiewicz E, Rhoads, RE. Phosphorylation of eukaryotic protein synthesis initiation factor 4E at ser-209. J. Biol. Chem. 270:14597–14603, 1995.

    PubMed  CAS  Google Scholar 

  21. Makkinje A, Xiong HS, Li M, Damuni Z. Phosphorylation of eukaryotic protein synthesis initiation factor 4E by insulin-stimulated protamine kinase. J. Biol. Chem. 270:14824–14828, 1995.

    PubMed  CAS  Google Scholar 

  22. Waskiewicz AJ, Flynn A, Proud CG, Cooper JA. Mitogen-activated protein kinases activate the serine/threonine kinases Mnk1 and Mnk2. EMBO J. 16:1909–1920, 1997.

    Article  PubMed  CAS  Google Scholar 

  23. Waskiewicz AJ, Johnson JC, Penn B, Mahalingam M, Kimball SR, Cooper JA. Phosphorylation of the cap-binding protein eukaryotic translation initiation factor 4E by protein kinase Mnk1 in vivo. Mol. Cell. Biol. 19:1871–80, 1999.

    PubMed  CAS  Google Scholar 

  24. Pyronnet S, Imataka H, Gingras AC, Fukunaga R, Hunter T, Sonenberg N. Human eukaryotic initiation factor 4G (eIF4G) recruits mnk1 to phosphorylate eIF-4E. EMBO J 18: 270–279, 1999.

    Article  PubMed  CAS  Google Scholar 

  25. Frederickson RM, Montine KS, Sonenberg N. Phosphorylation of eukaryotic translation initiation factor 4E is increased in Src-transformed cell lines. Mol. Cell. Biol. 11: 2896–2900, 1991.

    PubMed  CAS  Google Scholar 

  26. Frederickson RM, Mushynski WE, Sonenberg N. Phosphorylation of translation factor eIF-4E is induced in a ras-dependent manner during nerve growth factor-mediated PC12 cell differentiation. Mol. Cell. Biol. 12:1239–1247, 1992.

    PubMed  CAS  Google Scholar 

  27. Rinker-Schaeffer CW, Austin V, Zimmer S, Rhoads RE. Ras transformation of cloned rat embryo fibroblasts results in increased rates of protein synthesis and phosphorylation of eukaryotic initiation factor 4E. J. Biol. Chem. 267:10659–10664, 1992.

    PubMed  CAS  Google Scholar 

  28. Wang X, Flynn A, Waskiewicz AJ, Webb BLJ, Vries RG, Baines IA, Cooper JA, Proud CG. The phosphorylation of eukaryotic initiation factor eIF4E in response to phorbol esters, cell stresses, and cytokines is mediated by distinct MAP kinase pathways. J. Biol. Chem. 273:9373–9377, 1998.

    PubMed  CAS  Google Scholar 

  29. Vries RG, Flynn A, Patel JC, Wang X, Denton RM, Proud CG. Heat shock increases the association of binding protein-1 with initiation factor 4E. J. Biol. Chem. 272: 32779–32784, 1997.

    Article  PubMed  CAS  Google Scholar 

  30. DeBenedetti A, Harris A. eIF4E expression in tumours. Int. J. Biochem. Cell Biol. 31:59–72, 1999.

    CAS  Google Scholar 

  31. Kerekatte V, Smiley K, Hu B, Smith A, Gelder F, DeBenedetti A. The protooncogene/translation factor eIF-4E — A survey of its expression in breast carcinomas. Int. J. Cancer 65:27–31, 1995.

    Google Scholar 

  32. Nathan CA, Carter P, Liu L, Li BD, Abreo F, Tudor A, Zimmer SG, DeBenedetti A. Elevated expression of eIF-4E and FGF-2 isoforms during vascularization of breast carcinomas. Oncogene 15:1087–1095, 1997.

    PubMed  CAS  Google Scholar 

  33. Li BDL, Liu L, Dawson M, DeBenedetti A. Overexpression of eukaryotic initiation factor 4E (eIF4E) in breast carcinoma. Cancer 79:2385–2389, 1997.

    PubMed  CAS  Google Scholar 

  34. Li BDL, McDonald J, Nassar R, DeBenedetti A. Clinical outcome in stage 1 to 3 breast carcinomas and eIF4E overexpression. An. Surg. Soc. 227:756–762, 1998.

    CAS  Google Scholar 

  35. DeFatta RJ, Turbat-Herrera EA, Li BD, Anderson W, DeBenedetti A. Elevated expression of eIF-4E in confined early breast cancer lesions: possible role of hypoxia. Int. J. Cancer 80:516–522, 1999.

    Article  PubMed  CAS  Google Scholar 

  36. Anthony B, Carter P, DeBenedetti A. Overexpression of the protooncogene/translation factor 4E in breast-carcinoma cell lines. Int. J. Cancer 65:858–863, 1996.

    Article  PubMed  CAS  Google Scholar 

  37. Haydon MS, Googe JD, Sorrells DS, Ghali GE, Li BD. Progression of eIF4E gene amplification and overexpression in benign and malignant tumors of the head and neck. Cancer 88:2803–2810, 2000.

    Article  PubMed  CAS  Google Scholar 

  38. Nathan CA, Sanders K, Abreo FW, Nassar R, Glass J. Correlation of p53 and the proto-oncogene eIF4E in larynx cancers: prognostic implications. Cancer Res, 60:3599–3604, 2000.

    PubMed  CAS  Google Scholar 

  39. Nathan CA, Liu L, Li B, Nandy I, Abreo F, DeBenedetti A. Detection of the protooncogene eIF4E in surgical margins may predict recurrence in head and neck cancer. Oncogene 15:579–584, 1997.

    PubMed  CAS  Google Scholar 

  40. Franklin S, Pho T, Abreo FW, Nassar R, DeBenetti A, Stucker FJ, Nathan CA. Detection of the proto-oncogene eIF4E in larynx and hypopharynx cancers. Arch Otolaryngol Head Neck Surg 125:177–182, 1999.

    PubMed  CAS  Google Scholar 

  41. Sorrells DL Jr, Ghali GE, DeBenedetti A, Nathan CA, Li BD. Progressive amplification and overexpression of the eukaryotic initiation factor 4E gene in different zones of head and neck cancers. J Oral Maxillofac Surg, 57:294–299, 1999.

    Article  PubMed  Google Scholar 

  42. Wang S, Rosenwald IB, Hutzler MJ, Pihan GA, Savas L, Chen JJ, Woda BA. Expression of the eukaryotic translation initiation factors 4E and 2alpha in non-Hodgkin’s lymphomas. Am J Pathol 155: 247–255, 1999.

    PubMed  CAS  Google Scholar 

  43. Martin ME, Perez MI, Redondo C, Alvarez MI, Salinas M, Fando JL. 4E binding protein 1 expression is inversely correlated to the progression of gastrointestinal cancers. Int J Biochem Cell Biol 32: 633–642, 2000.

    PubMed  CAS  Google Scholar 

  44. Crew JP, Fuggle S, Bicknell R, Cranston DW, DeBenedetti A, Harris AL. Eukaryotic initiation factor-4E in superficial and muscle invasive bladder cancer and its correlation with vascular endothelial growth factor expression and tumor progression. Br J Cancer 82: 161–166, 2000.

    PubMed  CAS  Google Scholar 

  45. Rosenwald IB, Chen JJ, Wang S, Savas L, London IM, Pullman J. Upregulation of protein synthesis initiation factor eIF-4E is an early event during colon carcinogenesis. Oncogene 18:2507–17, 1999.

    Article  PubMed  CAS  Google Scholar 

  46. Fowler CL, Zimmer CC, Zimmer SG. Spontaneous progression of a stage IV-S human neuroblastoma cell line involves the increased expression of the protooncogenes ras and eukaryotic initiation factor 4E. Pediatr Pathol Mol Med 19: 433–447, 2000.

    CAS  Google Scholar 

  47. Zimmer, SG, DeBenedetti A, Graff JR. Translational control of malignancy: the mRNA cap-binding protein, eIF-4E, as a central regulator of tumor formation, growth, invasion, and metastasis. Anticancer Res. 20: 1343–1351, 2000.

    PubMed  CAS  Google Scholar 

  48. Rao CD, Pech M, Robbins KC, Aaronson SA. The 5′ untranslated sequence of the c-sis/PDGF 2 transcript is a potent translational inhibitor. Mol. Cell. Biol. 8: 284–292, 1988.

    PubMed  CAS  Google Scholar 

  49. Wang C, Stiles CD. Regulation of platelet-derived growth factor A messenger RNA translation in differentiating F9 teratocarcinoma cells. Cell Growth Diff. 4: 871–877, 1993.

    PubMed  CAS  Google Scholar 

  50. Prats H, Kaghad M, Prats AP, Klagsbrun M, Lelias JM, Liazun P, Chalon P, Tauber JP, Amalric F, Smith JA, Caput D. High molecular mass forms of basic fibroblast growth factor are initiated by alternative CUG codons. Proc. Natl. Acad. Sci. USA 86: 1836–1840, 1989.

    PubMed  CAS  Google Scholar 

  51. Kevil C, Carter P, Hu B, DeBenedetti A. Translational enhancement of FGF-2 by eIF-4 factors, and alternate utilization of CUG and AUG codons for translation initiation. Oncogene 11: 2339–2348, 1995.

    PubMed  CAS  Google Scholar 

  52. Noma T, Glick AB, Geiser AG, O’Reilly MA, Miller J, Roberts AB, Sporn MB. Molecular cloning and structure of the human transforming growth factor-beta 2 gene promoter. Growth Factors 4:247–255, 1991.

    PubMed  CAS  Google Scholar 

  53. Arrick BA, Lee AL, Grendell RL, Derynck R. Inhibition of translation of transforming growth factor-beta 3 mRNA by its 5′ untranslated region. Mol. Cell. Biol. 11: 4306–4313, 1991.

    PubMed  CAS  Google Scholar 

  54. Nilsson FC, Gammeltoft S, Christiansen J. Translational discrimination of mRNAs coding for human insulin-like growth factor II. J. Biol. Chem. 265: 13431–13434, 1990.

    Google Scholar 

  55. Kevil C, DeBenedetti A, Payne KD, Coe LL, Laroux S, Alexander S. Translational regulation for vascular permeability factor by eukaryotic initiation factor 4E: Implications for tumor angiogenesis. Int. J. Cancer 65: 785–790, 1996.

    Article  PubMed  CAS  Google Scholar 

  56. Saito H, Hayday AC, Wiman K, Hayward WS, Tonegawa S. Activation of the c-myc gene by translocation: a model for translational control. Proc. Natl. Acad. Sci. USA 80: 7476–7480, 1983.

    PubMed  CAS  Google Scholar 

  57. Darveau A, Pelletier J, Sonenberg N. Differential efficiencies of in vitro translation of mouse c-myc transcripts differing in the 5′ untranslated region. Proc. Natl. Acad. Sci. USA 82: 2315–2319, 1985.

    PubMed  CAS  Google Scholar 

  58. DeBenedetti A, Joshi B, Graff JR, Zimmer SG. CHO cells transformed by the translation factor eIF-4E display increased c-myc expression, but require overexpression of Max for tumorigenicity. Mol. Cell. Diff. 2: 347–371, 1994.

    CAS  Google Scholar 

  59. Zerial M, Toschi L, Ryseek RP, Schuermann M, Mueller R, Bravo R. The product of a novel growth factor activated gene, fosB, interacts with Jun proteins enhancing their DNA binding activity. EMBO J. 8: 805–813, 1989.

    PubMed  CAS  Google Scholar 

  60. Hensold JO, Stratton CA, Barth C. The conserved 5′-untranslated leader of Spi-1 (PU.1) mRNA is highly structured and potently inhibits translation in vitro but not in vivo. Nucl. Acids Res. 25: 2869–2876, 1997.

    Article  PubMed  CAS  Google Scholar 

  61. Raught B, Gingras AC, James A, Medina D, Sonenberg N, Rosen JM. Expression of a translationally regulated, dominant-negative CCAAT/enhancer-binding protein beta isoform and up-regulation of the eukaryotic translation initiation factor 2alpha are correlated with neoplastic transformation of mammary epithelial cells. Cancer Res. 56: 4382–4386, 1996.

    PubMed  CAS  Google Scholar 

  62. Calkhoven CF, Muller C, Leutz A. Translational control of C/EBPalpha and C/EBPbeta isoform expression. Genes Dev. 14: 1920–1932, 2000.

    PubMed  CAS  Google Scholar 

  63. Landers JE, Haines DS, Strauss JF 3rd, George DL. Enhanced translation: a novel mechanism of mdm2 oncogene overexpression identified in human tumor cells. Oncogene 9: 2745–2750, 1994.

    PubMed  CAS  Google Scholar 

  64. Landers JE, Cassel SL, George DL. Translational enhancement of mdm2 oncogene expression in human tumor cells containing a stabilized wild-type p53 protein. Cancer Res. 57:3562–3568, 1997.

    PubMed  CAS  Google Scholar 

  65. Capoulade C, Bressac-de Paillerets B, Lefrere I, Ronsin M, Feunteun J, Tursz T, Wiels J. Overexpression of MDM2, due to enhanced translation, results in inactivation of wild-type p53 in Burkitt’s lymphoma cells. Oncogene 16: 1603–1610, 1998.

    Article  PubMed  CAS  Google Scholar 

  66. Brown CY, Mize GJ, Pineda M, George DL, Morris DR. Role of two upstream open reading frames in the translational control of oncogene mdm2. Oncogene 18: 5631–5637, 1999.

    Article  PubMed  CAS  Google Scholar 

  67. Rosenwald IB, Karatzas A, Sonenberg N, Schmidt EV. Elevated levels of cyclin D1 protein in response to increased expression of eukaryotic initiation factor eIF4E. Mol. Cell. Biol. 13: 7358–7363, 1993.

    PubMed  CAS  Google Scholar 

  68. Rosenwald EB, Kaspar R, Rosseau D, Gehrke L, Leboulch P, Chen JJ, Schmidt EV, Sonenberg N, London IM. Eukaryotic translation initiation factor 4E regulates expression of cyclin D at transcriptional and posttranscriptional levels. J. Biol. Chem. 270: 21176–21180, 1995.

    Article  PubMed  CAS  Google Scholar 

  69. Rousseau D, Kaspar R, Rosenwald I, Gehrke L, Sonenberg N. Translation initiation of ornithine decarboxylase and nucleocytoplasmic transport of cyclin D1 mRNA are increased in cells overexpressing eukaryotic initiation factor 4E. Proc. Natl. Acad. Sci. U.S.A. 93: 1065–70, 1996.

    Article  PubMed  CAS  Google Scholar 

  70. Agrawal D, Hauser P, McPherson F, Dong F, Garcia A, Pledger WJ. Repression of p27kip1 synthesis by platelet-derived growth factor in BALB/c 3T3 cells. Mol. Cell. Biol. 16: 4327–4336, 1996.

    PubMed  CAS  Google Scholar 

  71. Hengst L, Reed SI. Translational control of p27kip1 accumulation during the cell cycle. Science 271: 1861–1864, 1996.

    PubMed  CAS  Google Scholar 

  72. Wood MW, Van Dongen HM, Van Dongen AM. The 5′ untranslated region of the N-methyl-D-aspartate receptor NR2A subunit controls efficiency of translation. J. Biol. Chem. 271: 8115–20, 1996.

    Article  PubMed  CAS  Google Scholar 

  73. Child SJ, Miller MK, Geballe AP. Cell type-dependent and-independent control of HER-2/ neu translation. Int. J. Biochem. Cell Biol. 31: 201–213, 1999.

    Article  PubMed  CAS  Google Scholar 

  74. Kaspar R, Gerke L. In: Translational Control, CSH Press, pp. 152, 1992.

    Google Scholar 

  75. Bamford RN, Battiata AP, Burton JD, Sharma H, Waldmann TA. Interleukin (IL) 15/IL-T production by the adult T-cell leukemia cell line HuT-102 is associated with a human T-cell lymphotrophic virus type IR region/IL-15 fusion message that lacks many upstream AUGs that normally attenuate IL-15 mRNA translation. Proc. Natl. Acad. Sci. USA 93: 2897–2902, 1996.

    Article  PubMed  CAS  Google Scholar 

  76. Shantz LM, Pegg AE. Overproduction of ornithine decarboxylase caused by relief of translational repression is associated with neoplastic transformation. Cancer Res. 54: 2313–2316, 1994.

    PubMed  CAS  Google Scholar 

  77. Shantz LM, Hu RH, Pegg AE. Regulation of ornithine decarboxylase in a transformed cell line that overexpresses translation initiation factor eIF-4E. Cancer Research 56: 3265–3269, 1996.

    PubMed  CAS  Google Scholar 

  78. Graff JR, DeBenedetti A, Olson JW, Tamez P, Casero RA, Zimmer SG. Translation of ODC mRNA and polyamine transport are suppressed in ras-transformed CREF cells by depleting translation initiation factor 4E. BBRC 240: 15–20, 1997.

    PubMed  CAS  Google Scholar 

  79. Manzella JM, Rychlik W, Rhoads RE, Hershey JW, Blackshear PJ. Insulin induction of ornithine decarboxylase. Importance of mRNA secondary structure and phosphorylation of eukaryotic initiation factors eIF-4B and cIF4E. J. Biol. Chem. 266: 2383–2389, 1991.

    PubMed  CAS  Google Scholar 

  80. Grens A, Scheffler IE. The 5′-and 3–-untranslated regions of ornithine decarboxylase mRNA affect the translational efficiency. J. Biol. Chem. 265: 11810–11816, 1990.

    PubMed  CAS  Google Scholar 

  81. Fagan RJ, Lazaris-Karatzas A, Sonenberg N, Rozan R. Translational control of ornithine aminotransferase. Modulation by initiation factor eIF4E. J. Biol. Chem. 266: 16518–16523, 1991.

    PubMed  CAS  Google Scholar 

  82. Shantz LM, Viswanath R, Pegg AE. Role of the 5′-untranslated region of the mRNA in the synthesis of S-adenosylmethionine decarboxylase and its regulation by spermine. Biochem J. 302:765–772, 1994.

    PubMed  CAS  Google Scholar 

  83. Marth JD, Overell RW, Meier KE, Krebs EG, Permutter RM. Translational activation of the lck proto-oncogene. Nature 332: 171–173, 1988.

    Article  PubMed  CAS  Google Scholar 

  84. Hoover DS, Wingett DG, Zhang J, Reeves R, Magnuson NS. Pim-1 protein expression is regulated by its 5′-untranslated region and translation initiation factor eIF4E. Cell Growth Diff. 8:1371–1380, 1997.

    PubMed  CAS  Google Scholar 

  85. Abid MR, Li Y, Anthony C, De Benedetti A. Translational regulation of ribonucleotide reductase by eukaryotic initiation factor 4E links protein synthesis to the control of DNA replication. J. Biol. Chem. 274: 35991–35998, 1999.

    Article  PubMed  CAS  Google Scholar 

  86. Bommer UA, Lazaris-Karatzas A, De Benedetti A, Nurnberg P, Benndorf R, Bielka H, Sonenberg N. Translational regulation of the mammalian growth-related protein P23: involvement of eIF-4E. Cell Mol Biol Res. 40: 633–641, 1994.

    PubMed  CAS  Google Scholar 

  87. Lazaris-Karatzas A, Montine KS, Sonenberg N. Malignant transformation by a eukaryotic initiation factor subunit that binds to mRNA cap. Nature 345: 544–547, 1990.

    Article  PubMed  CAS  Google Scholar 

  88. Lazaris-Karatzas A, Sonenberg N. The mRNA 5′ cap-binding protein, eIF-4E, cooperates with v-myc or E1A in the transforming of primary rodent fibroblasts. Mol. Cell. Biol. 12: 1234–1238, 1992.

    PubMed  CAS  Google Scholar 

  89. Boylan JF, Jackson J, Steiner MR, Shih TY, Duigou GJ, Roszman T, Fisher PB, Zimmer SG. Role of the Ha-ras (RasH) oncogene in mediating progression of the tumor cell phenotype (review). Anticancer Res. 10: 717–724, 1990.

    PubMed  CAS  Google Scholar 

  90. Graff JR, Boghaert ER, DeBenedetti A, Tudor DM, Zimmer SG. Reduction of translation initiation factor 4E reduces tumor growth, invasion and metastasis of ras-transformed cloned rat embryo fibroblast. Int. J. Cancer 60:255–263, 1995.

    PubMed  CAS  Google Scholar 

  91. Rinker-Schaeffer CW, Graff JR, DeBenedetti A, Zimmer SG, Rhoads RE. Decreasing the level of translation initiation factor 4E with antisense RNA causes reversal of ras-mediated transformation and tumorigenesis of cloned rat embryo fibroblasts. Int. J. Cancer 55:841–847, 1993.

    PubMed  CAS  Google Scholar 

  92. DeFatta RJ, Nathan, CA, DeBenedetti A. Antisense RNA to eIF4E suppresses oncogenic properties of a head and neck squamous cell carcinoma cell line. Laryngoscope 110: 928–933, 2000.

    PubMed  CAS  Google Scholar 

  93. Rousseau, D., A-C Gingras, A. Pause and N. Sonenberg. (1996) The eIF-4E-binding proteins 1 and 2 are negative regulators of cell growth. Oncogene 13: 2415–2420.

    PubMed  CAS  Google Scholar 

  94. Gunthert U, Stauder R, Mayer B, Terpe HJ, Finke L, Friedrichs K. Are CD44 variant isoforms involved in human tumor progression? Cancer Surv. 24: 19–42, 1995.

    PubMed  CAS  Google Scholar 

  95. Bernhard EJ, Graber SB, Muschel RJ. Direct evidence linking expression of matrix metalloproteinase 9 (92-kDa gelatinase/collagenase) to the metastatic phenotype in transformed rat embryo cells. Proc. Natl. Acad. Sci. 91:4293–4297, 1994.

    PubMed  CAS  Google Scholar 

  96. Su ZZ, Leon JA, Austin VA, Zimmer SG, Fisher PB. Wild type 5 adenovirus transforming genes function as trans-dominant suppressors of oncogenesis in mutant type 5 adenovirus transformed rat embryo fibroblast cells. Cancer Res. 53: 1929–1938, 1993.

    PubMed  CAS  Google Scholar 

  97. Dostie J, Ferraiuolo M, Pause A, Adam SA, Sonenberg N. A novel shuttling protein, 4E-T, mediates the nuclear import of the mRNA 5′ cap-binding protein, eIF-4E. EMBO J. 19: 3142–3156, 2000.

    Article  PubMed  CAS  Google Scholar 

  98. Lejbkowicz F, Goyer C, Darveau A, Neron S, Lemieux R, Sonenberg N. A fraction of the mRNA 5′ cap-binding protein, eukaryotic initiation factor 4E, localizes to the nucleus. Proc. Nat. Acad. Sci. USA 89: 612–9616, 1992.

    Google Scholar 

  99. Dostie J, Lejbkowicz F, Sonenberg N. Nuclear eukaryotic initiation factor 4E (eIF4E) colocalizes with splicing factors in speckles. J. Cell. Biol. 148: 239–247, 2000.

    Article  PubMed  CAS  Google Scholar 

  100. Wright JA, Turley EA, Greenberg AH. Transforming growth factor beta and fibroblast growth factor as promoters of tumor progression to malignancy. Crit. Rev. Oncog. 4: 473–492, 1993.

    PubMed  CAS  Google Scholar 

  101. Herlyn M, and Malkowicz SB. Regulatory pathways in tumor growth and invasion. Lab. Invest. 64: 262–271, 1991.

    Google Scholar 

  102. Liotta LA, Wewer U, Rao NC, Schiffman E, Sracke M, Guirguis R, Thorgeeirsson U, Muschel R, Sobel M. Biochemical mechanisms of tumor invasion and metastases. Adv. Exp. Med. Biol. 233: 161–169, 1988.

    PubMed  CAS  Google Scholar 

  103. Klein PS, Melton DA. Induction of mesoderm in Xenopus laevis embryos by translation initiation factor 4E. Science 265: 803–805, 1994.

    PubMed  CAS  Google Scholar 

  104. Lazaris-Karatzas A, Smith MR, Frederickson RM, Jaramillo ML, Liu Y-L, Kung H-F, Sonenberg N. Ras mediates translation initiation factor 4E-induced malignant transformation. Genes and Development 6: 1631–1642, 1992.

    PubMed  CAS  Google Scholar 

  105. Polunovsky VA, Gingras AC, Sonenberg N, Peterson M, Tan A, Rubins JB, Manivel JC, Bitterman PB. Translational control of the antiapoptotic function of Ras. J. Biol. Chem. 275: 24776–24780, 2000.

    Article  PubMed  CAS  Google Scholar 

  106. Tan A, Bitterman P, Sonenberg N, Peterson M, Polunovsky V. Inhibition of Myc-dependent apoptosis by eukaryotic translation initiation factor 4E requires cyclin D1. Oncogene 19: 1437–1447, 2000.

    Article  PubMed  CAS  Google Scholar 

  107. Polunovsky VA, Rosenwald IB, Tan AT, White J, Chiang L, Sonenberg N, Bitterman PB. Translational control of programmed cell death: eukaryotic translation initiation factor 4E blocks apoptosis in growth-factor-restricted fibroblasts with physiologically expressed or deregulated Myc. Mol. Cell. Biol. 16: 6573–81, 1996.

    PubMed  CAS  Google Scholar 

  108. Bushell M, Wood W, Clemens MJ, Morley SJ. Changes in integrity and association of eukaryotic protein synthesis factors during apoptosis. Eur. J. Biochem. 267: 1083–1091, 2000.

    Article  PubMed  CAS  Google Scholar 

  109. Herbert TP, Fahraeus R, Prescott A, Lane DP, Proud CG. Rapid induction of apoptosis mediated by peptides that bind initiation factor 4E. Curr. Biology 10: 793–796, 2000.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Kluwer Academic Publishers

About this chapter

Cite this chapter

Zimmer, S.G., Graff, J.R. (2002). The Emerging Role for the mRNA Cap-Binding Protein, EIF-4E, in Metastatic Progression. In: Welch, D.R. (eds) Cancer Metastasis — Related Genes. Cancer Metastasis — Biology and Treatment, vol 3. Springer, Dordrecht. https://doi.org/10.1007/0-306-47821-8_14

Download citation

  • DOI: https://doi.org/10.1007/0-306-47821-8_14

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-1-4020-0522-0

  • Online ISBN: 978-0-306-47821-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics