Skip to main content

The Role of Neural Networks in Reactor Diagnostics and Control

  • Chapter
Advances in Nuclear Science and Technology

Part of the book series: Advances in Nuclear Science & Technology ((ANST,volume 24))

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Alguindigue, I.A., Uhrig, R.R., 1991, Vibration monitoring with artificial neural networks, Proceedings of SMORN-VI, Gatlinburg, 59.01

    Google Scholar 

  • Arul, A.J., 1994, Reactivity surveillance on a nuclear reactor by using a layered artificial neural network, Nucl. Sci. Engng 117:186

    Google Scholar 

  • Bartlett, E.B., and Uhrig, R.E., 1992, Nuclear power plant status diagnostics using an artificial neural network, Nucl. Technology 97:272

    Google Scholar 

  • Carre, J.C. and Martinez, J.M., 1991, Approach to identification and advanced control of PWR using neural networks, Proceedings of SMORN-Vl, Gatlinburg, 56.01

    Google Scholar 

  • Clark, R.N. and Campbell, P., 1982, Instrument fault detection in a pressurized water reactor pressurizer, Nucl. Technology 56:23

    Google Scholar 

  • Cheon, S.W., and Chang, S.H, 1993, Application of neural networks to a connectionist expert system for transient identification in nuclear power plants, Nucl. Technology 102:177

    Google Scholar 

  • Churchland, P.S., and Sejnowski, T., 1992, The Computational Brain, MIT Press

    Google Scholar 

  • Eberhart, R.C., and Dobbins, R.W., 1990, Neural Network PC Tools, A Practical Guide, Academic Press, Inc., N.Y.

    Google Scholar 

  • Eryurek, E. and Upadhyaya, B.R., 1990, Sensor validation for power plants using adaptive back propagation neural networks, IEEE Trans. on Nuclear Sci. Symp.. San Francisco 37:1040

    Google Scholar 

  • Eryurek E, and Türkcan, E., 1991, Neural networks for sensor validation and plant-wide monitoring, Int. Rep. ECN-RX—91-057, June 1991

    Google Scholar 

  • Fantoni, F.P., and Mazzola, A., 1995, Transient and steady signal validation in nuclear power plants using autoassociative neural networks and pattern recognition, Proc. SMORN-VII, 19–23 June 1995, Avignon, France 13.5

    Google Scholar 

  • Freeman, A. and Skapura, D.M., 1991, Neural Networks, Algorithms, Applications and Programming Techniques, Addison-Wesley Publishing Co., NY.

    MATH  Google Scholar 

  • Fry, D.N., 1971, Experience in reactor malfunction diagnosis using on-line noise analysis, Nucl. Technol. 10:273

    Google Scholar 

  • Grossberg, S., 1988, Neural Networks and Natural Intelligence, The MIT Press, Cambridge, Massachusetts

    Google Scholar 

  • Quo, Zh., and Unrig, R.E., 1992, Use of artificial neural networks to analyze nuclear power plant performance, Nucl. Technology 99:36

    Google Scholar 

  • Haykin, S., 1994, Neural Networks: A Comprehensive Foundation, Maxmillan/IEEE Press

    Google Scholar 

  • Hebb, D.O., 1949, The Organization of Behaviour, John Wiley, New York.

    Google Scholar 

  • Herr, J.D. and Thomas, J.R., 1989, Low frequency coolant temperature and neutron flux perturbations, Proc. 7th Power Plant Dynamics, Control and Testing Symposium, Knoxville, Tennessee 50.01

    Google Scholar 

  • Hertz, J., Krogh, A., and Palmer, R.G., 1991, Introduction to the Theory of Neural Computation. Addison-Wesley, N.Y.

    Google Scholar 

  • Hollstein F., Meyer K., 1995, Calculation of neutron noise due to control rod vibrations using nodal methods for hexagonal-Z-geometry, Proc. SMORN-VII, 19–23 June 1995, Avignon, France 12.1

    Google Scholar 

  • Hopfield, J.J., 1982, Neural networks and physical systems with emergent collective computational abilities. Proc. Natl. Acad. Sci. 79:2554

    Article  MathSciNet  ADS  Google Scholar 

  • Hopfield, J.J., 1984 Neurons with graded have collective computational properties like those of two-state neurons. Proc. Natl Acad. Sci. 81:3088

    Article  ADS  Google Scholar 

  • Ikonomopoulos, A., Tsoukalas, L.H., and Uhrig, R.E., 1993, Integration of neural networks with fuzzy reasoning for measuring operational parameters in a nuclear reactor, Nucl. Technology 104:1

    Google Scholar 

  • Ishikawa, M., 1995, Learning of modular structured networks, Artificial Intelligence, 75:51

    Article  MathSciNet  Google Scholar 

  • Jouse, W.C:, and Williams, J.G., 1993, Safety control of nuclear power operation using self-programming neural networks, Nucl. Sci. Engng 114:42

    Google Scholar 

  • Kim, H.K., Lee, S.H., and Chang, S.H., 1993, Neural network model for estimating departure from nucleate boiling performance of a pressurized water reactor core, Nucl. Technology 101:111

    Google Scholar 

  • Kitamura, M., 1980, Detection of sensor failures in nuclear plant using analytic redundancy, Trans. Am. Nucl. Soc. 34:351

    MathSciNet  Google Scholar 

  • Kitamura, M., 1983, Use of analytic redundancy for surveillance and diagnosis of nuclear power plants, Proc. 5th Power Plant Dynamics, Control and Testing Symposium, Knoxville, Tennessee 33.01

    Google Scholar 

  • Kitamura, S., 1992, Neural networks and inverse problems in measurement and control, Proc. IMACS/SICE International Symposium on Robotics, Mechatronics and Manufacturing Systems. Sep. 16–20, 1992, Kobe, 205

    Google Scholar 

  • Kohonen, T., 1972, Correlation matrix memories I.E.E.E. Transactions on Computers C 21(4):353

    Article  MATH  Google Scholar 

  • Kosko, B., 1992, Neural Networks and Fuzzy Systems, Prentice Hall, NJ.

    MATH  Google Scholar 

  • Kozma, R., Yokoyama. Y., and Kitamura, M., 1995a, Intelligent monitoring of NPP anomalies by an adaptive neuro-fuzzy signal processing system, Proc. Topical Meeting on Computer-Based Human Support Systems: Technology, Methods, and Future, June 25–29, 1995, Philadelphia, 449.

    Google Scholar 

  • Kozma, R., Sakuma, M., Sato, S., and Kitamura, M., 1995b, An adaptive neuro-fuzzy signal processing method by using structural learning with forgetting, Intelligent Automation and Soft Computing, 1:389

    Google Scholar 

  • Kozma, R., Kitamura, M., and Sato, S., 1996, Monitoring of NPP state using structural adaptation in a neural signal processing system, Proc. 1996 ANS International Topical Meeting on Nuclear Plant Instrumentation, Control, and Human-Machine Interface Technologies, May 6–9, 1996, The Pennsylvania State University, 273

    Google Scholar 

  • Kim, K., and Bartlett, E.B., 1994, Error prediction for a nuclear power plant fault-diagnostic advisor using neural networks, Nucl. Technology 108:283

    Google Scholar 

  • Kohonen, T., 1984, Self-Organization and Associative memory, Springer-Verlag, Berlin

    MATH  Google Scholar 

  • Ku, C.C., Lee K.Y., and Edwards R.M., 1991, Neural network for adapting nuclear power plant control for wide-range operation. Trans. Am. Nucl. Soc. 63:114

    Google Scholar 

  • Lucia, A., Ohlmer, E., and Schwalm, D., 1973, Correlation between neutron noise and fuel element oscillations in the ECO reactor, Atomkernenergie, 22:6

    Google Scholar 

  • Majumdar, M.C., Majumdar, D and Sacket, J.I. (ed.), 1988, Proceedings of Topical Meeting on AI and other Innovative Computer Applications in Nuclear Industry, Plenum Press.

    Google Scholar 

  • Marseguerra, M., and Zio, E., 1994, Fault diagnosis via neural networks: the Boltzmann machine, Nucl. Sci. Engng, 117:194

    Google Scholar 

  • Makai M., 1994, Nodewise analytical calculation of the transfer function, Ann. nucl. Energy 1:519

    Article  Google Scholar 

  • McCulloch, W.C, and Pitts, W., 1943, A logical calculus of the ideas immanent in nervous activity. Bulletin of Math. Biophysics, 5:115

    Article  MathSciNet  MATH  Google Scholar 

  • Michal, R.A., 1994, Before the year 2000: Artificial neural networks may set the standard, Nucl. News July 1994:29

    Google Scholar 

  • Minsky, M.L., and Papert, S., 1969, Perceptrons, MIT Press, Cambridge, MA.

    MATH  Google Scholar 

  • Nabeshima K., Suzuki K., and Türkcan E., 1995, Neural network with an expert system for real-time nuclear power plant monitoring. Proc. SMORN-VII, 19–23 June 1995, Avignon, France 4.1

    Google Scholar 

  • Narendra, K.S., and Annaswamy, S., 1989, Stable Adaptive Systems, Prentice Hall, Inc., Englewood Cliffs, New Jersey.

    Google Scholar 

  • Ohga, Y., and Seki, H., 1993, Abnormal event identification in nuclear power plants using a neural network and knowledge processing, Nucl. Technology 101:159

    Google Scholar 

  • Parlos A.G., Atiya, A.F., Chong, K.T., and Tsai, W.K., 1992, Nonlinear identification of process dynamics using neural networks, Nucl. Technology 97:79

    Google Scholar 

  • Pázsit I., and Glöckler O., 1983, On the neutron noise diagnostics of PWR control rod vibrations I. Periodic vibrations. Nucl. Sci. Engng. 85:167

    Google Scholar 

  • Pázsit I., and Glöckler O., 1984, On the neutron noise diagnostics of PWR control rod vibrations II. Stochastic vibrations. Nucl. Sci. Engng. 88:77

    Google Scholar 

  • Pázsit I., 1992, Dynamic transfer function calculations for core diagnostics. Ann. nucl. Energy 19:303

    Article  Google Scholar 

  • Pázsit I., and Glöckler O., 1988, On the neutron noise diagnostics of PWR control rod vibrations III. Application at power plant. Nucl. Sci. Engng. 99:313

    Google Scholar 

  • Pázsit I., Garis N.S., and Glöckler O., 1996, On the neutron noise diagnostics of PWR control rod vibrations IV. Application of neural networks. To appear in Nucl. Sci. Engng.

    Google Scholar 

  • Proceedings, 1990, Proceedings of the Topical Meeting On Advances In Human Factors Research On Man/Computer Interactions: Nuclear and Beyond, Nashville, Tennessee.

    Google Scholar 

  • Proceedings, 1991, Proceedings of the AI91, Frontiers in Innovative Computing for the Nuclear Industry, Jackson Lake, Wyoming.

    Google Scholar 

  • Proceedings, 1993, Proceedings of the Topical Meeting on Nuclear Plant Instrumentation, Control and Man-Machine Interface Technologies, Oak Ridge, Tennessee.

    Google Scholar 

  • Proceedings, 1995a Proc. 9th Power Plant Dynamics, Control and Testing Symposium, Knoxville, Tennessee

    Google Scholar 

  • Proceedings, 1995b, Proc. SMORN-VII, 19–23 June 1995, Avignon, France

    Google Scholar 

  • Roh, M.S., Cheon, S.W., and Chang, S.h., 1991, Power prediction in nuclear power plants using a back-propagation learning neural network, Nucl. Technology 94:270

    Google Scholar 

  • Rosenblatt, F., 1958, The perceptron: a probabilistic model for information storage and organization on the brain. Psychological Review, 65:386

    Article  MathSciNet  Google Scholar 

  • Rumelhart, D.E:, and McClelland, J.L., 1986, Parallel Distributed Processing, Explorations in the Microstructure of Cognition, Vol. I: Foundations. MIT Press, Cambridge, MA

    Google Scholar 

  • Rumelhart, D.E., Hinton, G.E., and Williams, R.J., 1986, Learning internal representations by error propagation, in: Parallel Distributed Processing, MIT Press, Cambridge, MA.

    Google Scholar 

  • Shieh, D.J., Upadhyaya, B.R. and Sweeney, F.J, 1987, Application of noise analysis technique for monitoring the moderator temperature coefficient of reactivity in pressurized water reactors, Nucl.Sci. and Engng. 95:14

    Google Scholar 

  • Thomas, J.R. and Clem, A.W, 1991, PWR moderator temperature coefficient via noise analysis: time series methods, Proceedings of SMORN-VI, Gatlinburg, 34.01

    Google Scholar 

  • Thomas, J.R. and Adams, J.T., 1994, Noise Analysis Method for Monitoring the Moderator Temperature Coefficient of Pressurized Water Reactors: Neural Network Calibration, Nucl. Technology 107:236

    Google Scholar 

  • Tou, J.T., and Gonzalez, R.C., 1974, Pattern Recognition Principles, Addison-Wesley Publishing Co., Inc., Reading, Massachusetts.

    MATH  Google Scholar 

  • Tylee, J.L., 1982, A generalized likelihood ratio approach to detecting and identifying failures in pressurizer instrumentation, Nucl. Technology 56:484.

    Google Scholar 

  • Tylee, J.L., 1983, On-line failure detection in nuclear power plant instrumentation, IEEE Trans, on Automatic Control, AC-28:406

    Article  Google Scholar 

  • Ugolini, D., Yoshikawa, S. and Endou, A., 1994, Implementation of a model reference adaptive control system using neural network to control a fast breeder reactor evaporator, Proc. 2nd Specialists’ Meeting on Application of Artificial Intelligence and Robotics to Nuclear Plants, AIR’94, JAERI, Tokai, Japan, 157

    Google Scholar 

  • Ugolini, D., Yoshikawa, S. and Ozaki, K., 1995, Improved neural network based MRAC system to control an FBR evaporator, Proc. 9th Power Plant Dynamics, Control and Testing Symposium, Knoxville, Tennessee 52.01

    Google Scholar 

  • Uhrig, R.E., 1990, Use of artificial intelligence in nuclear power plants, Proceedings of the Topical Meeting on Advances in Human Factors Research on Man/Computer Interactions: Nuclear and Beyond, Nashville, Tennessee, 210

    Google Scholar 

  • Uhrig R.E., 1991, Potential application of neural networks to the operations of nuclear power plants, Nuclear Safety, 32:68

    Google Scholar 

  • Upadhyaya, B.R., and Kitamura, M., 1980, Stability monitoring of boiling water reactors by time series analysis of neutron noise, Nucl. Sci. Engng. 77:480.

    Google Scholar 

  • Upadhyaya, B.R., 1985, Sensor failure detection and estimation, Nuclear Safety, 26:32

    Google Scholar 

  • Upadhyaya B.R., Eryurek E., and Mathai G., 1990, Neural networks for sensor validation and plant monitoring, Proc. Int. Fast Reactor Meeting, 12–16 August 1990 Snowbird, Utah

    Google Scholar 

  • Upadhyaya, B.R., Glöckler, O., 1991, Estimation of feedback parameters in pressurized water reactors using neural networks. Proc. SMORN-VI, May 19–24 1991, Gatlinburg, Tennessee, USA 58.01

    Google Scholar 

  • van der Hagen, T.H.J.J., 1994, The scaling parameter of the sigmoid function in artificial neural networks, Nucl. Technology 106:135

    Google Scholar 

  • van der Hagen, T.H.J.J., 1995, Artificial neural networks versus conventional methods for boiling water reactor stability monitoring, Nucl. Technology, 109:286

    Google Scholar 

  • Vitela, X.E., and Reifman, J., 1994 Accelerating learning of neural networks with conjugate gradients for nuclear power plant applications, Nucl. Technology 106:225

    Google Scholar 

  • Wacholder, E., Elias, E., and Merlis, Y., 1995 Artificial neural networks optimization method for radioactive source localization, Nucl. Technology 110:228

    Google Scholar 

  • Wasserman, Ph. D., 1989, Neural Computing: Theory and Practice, van Nostrand Reinhold, NY.

    Google Scholar 

  • Werbos, P., 1990, Backpropagation through time; what it does and how to do it? Proc. IEEE 78:1550

    Article  Google Scholar 

  • Widrow B., and Hoff, M.E., 1960 Adaptive switching circuits. 1960 IRE WESCON Convention Record: Part 4, Computers: Man-Machine Systems. Los Angeles, 96–104

    Google Scholar 

  • Williams, M.M.R., 1974, Random Processes in Nuclear Reactors, Pergamon Press, Oxford

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Kluwer Academic Publishers

About this chapter

Cite this chapter

Pázsit, I., Kitamura, M. (2002). The Role of Neural Networks in Reactor Diagnostics and Control. In: Lewins, J., Becker, M. (eds) Advances in Nuclear Science and Technology. Advances in Nuclear Science & Technology, vol 24. Springer, Boston, MA. https://doi.org/10.1007/0-306-47811-0_3

Download citation

  • DOI: https://doi.org/10.1007/0-306-47811-0_3

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-306-45515-5

  • Online ISBN: 978-0-306-47811-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics