Skip to main content

The N≡N Triple Bond Activation by Transition Metal Complexes

  • Chapter

Part of the book series: Catalysis by Metal Complexes ((CMCO,volume 25))

Abstract

The activation of the N≡N triple bond requires the coordination of N2 molecule to transition metal centers. It is predicted that the stronger M-N2 bond the easier N≡N triple bond utilization, which could occur via various ways including protonation, nucleophilic addition, hydrogenation and coordination of another transition metal center. As example, we report the density functional (B3LYP) studies of the reaction mechanism of model complex A1, [p2n2]Zr(μ-η2-N2)Zr[p2n2] where [p2n2]=(PH3)2(NH2)2 with a H2 molecule. It was shown that reaction with the first H2 molecule proceeds via 21 kcal/mol barrier at the “metathesis-like” transition state, A2, and produces the diazenido-μ-hydride complex, A7(B1). Complex A7(B1) is the only experimentally observed product of the reaction A1+H2 reaction, and separated by nearly 55–60 kcal/mol barriers from the energetically more (by about 40–50 kcal/mol) favorable hydrazono A13, [p2n2]Zr(μ-NH2)(μ-N)Zr[p2n2] and hydrado A17. [p2n2]Zr(μ-NH)2Zr[p 2 n 2] complexes. The addition of the second H2 molecule to complex A1 (the addition of the first H2 to A1) take place with a 19.5 kcal/mol barrier, which is 1.2 kcal/mol smaller than that for the first H2 addition reaction. Since the addition of the first H2 molecule to A1 is known to occur at laboratory conditions, one predicts that the addition of the second hydrogen molecule to A1 should also be feasible. Furthermore, the complex A17, the thermodynamically most stable but kinetically not accessible product of the first H2 addition reaction to A1 could be obtained with the aid of the second reacting H2 molecule. We predict that addition of the second (even third) hydrogen molecule to complex [p2n2]Zr(μ-η2-N2)Zr[p2n2], A1 should be feasible under appropriate laboratory conditions. We encourage experimentalists to check our theoretical prediction.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. (a)Howard, J. B.; Rees, D. C. Chem. Rev. 1996, 96, 2965–2982. (b) Burgess, B. K.; Lowe, D. J. Chem. Rev. 1996, 96, 2983–3011. (c) Eady, R. R. Chem. Rev. 1996, 96, 3013–3030. (d) Eady, R. R. Adv. Inorg. Chem. 1991, 36, 77. (e) Kim, J.; Rees, D. C. Nature 1992, 360, 553. (f) Kim, J.; Rees, D. C. Science 1992, 257, 1677. (g) Dees, D. C.; Chan, M. K.; Kim, J. Adv. Inorg. Chem. 1993, 40, 89.

    Article  CAS  Google Scholar 

  2. Ertl, G. in Catalytic Ammonia Synthesis, Jennings, J.R. Eds., Plenum, New York, 1991.

    Google Scholar 

  3. See: (a) Leigh, G.J. New J. Chem. 1994, 18, 157–161; (b) Leigh, G.J. Science 1998, 279, 506–508, and references therein

    CAS  Google Scholar 

  4. Vol’pin, M.E.; Shur, V.B. Doklady Acad. Nauk SSSR 1964, 156, 1102.

    Google Scholar 

  5. Bazhenova, T.A.; Shilov, A.E. Coord. Chem. Rev. 1995, 144, 69.

    Article  CAS  Google Scholar 

  6. (a) Laplaza, C. E.; Cummins, C. C. Science 1995, 268, 861. (b) Laplaza, C. E.; Johnson, M. J. A.; Peters, J. C.; Odom, A. L.; Kim, E.; Cummins, C. C.; George, G. N.; Pickering, I. J. J. Am. Chem. Soc. 1996, 118, 8623. (c) Laplaza, C. E.; Odom, A. L.; Davis, W. M.; Cummins, C. C. J. Am. Chem. Soc. 1995, 117, 4999–5000.

    CAS  Google Scholar 

  7. See: Hidai, M.; Ishii, Y. Bull. Chem. Soc. Jpn. 1996, 69, 819–831, and references therein.

    CAS  Google Scholar 

  8. Nishibayashi, Y.; Iwai, S.; Hidai, M. Science 1998, 279, 540–542.

    Article  CAS  Google Scholar 

  9. Fryzuk, M. D.; Love, J. B.; Rettig, S. J.; Young, V. G. Science 1997, 275, 1445–1447.

    Article  CAS  Google Scholar 

  10. Fryzuk, M. D.; Haddad, T. S.; Rettig, S. J. J. Am. Chem. Soc. 1990, 112, 8185. (b) Fryzuk, M. D.; Haddad, T. S.; Mylvaganam, M.; McConville, D. H.; Rettig, S. J. J. Am. Chem. Soc. 1993, 115, 2782. (c) Cohen, J. D.; Mylvaganam, M.; Fryzuk, M. D.; Loehr, T. M. J. Am. Chem. Soc. 1994, 116, 9529. (d) Fryzuk, M. D.; Love, J. B.; Rettig, S. J. Organometallics 1998, 17, 846.

    Article  CAS  Google Scholar 

  11. Musaev, D. G. Russ. J. Inorg. Chem. 1988, 33, 3207. (b) Bauschlicher, C. W., Jr.; Pettersson, L. G. M.; Siegbahn, P. E. M. J. Chem. Phys. 1987, 87, 2129. (c) Siegbahn, P.E. M. J. Chem. Phys. 1991, 95, 364. (d) Blomberg, M. R. A.; Siegbahn, P. E. M. J. Am. Chem. Soc. 1993, 115, 6908.

    CAS  Google Scholar 

  12. Basch, H.; Musaev, D. G.; Morokuma, K.; Fryzuk, M. D.; Love, J. B.; Seidel, W. W.; Albinati, A.; Koetzle, T. F.; Klooster, W. T.; Mason, S. A.; Eckert, J. J. Am. Chem. Soc. 1999, 121, 523–528.

    CAS  Google Scholar 

  13. Basch, H.; Musaev, D. G.; Morokuma, K. J. Am. Chem. Soc. 1999, 121, 5754–5761.

    CAS  Google Scholar 

  14. Basch, H.; Musaev, D. G.; Morokuma, K. Organometallics 2000, 19, 3393–3403.

    Article  CAS  Google Scholar 

  15. Becke, A. D. Phys. Rev. A 1988, 38, 3098. (b) Becke, A. D. J. Chem. Phys., 1993, 98, 5648. (c) Lee, C.; Yang, W.; Parr, R. G. Phys. Rev., 1988, B37, 785. (d) Stephens, P. J.; Devlin, F. J.; Chabalowski, C. F.; M. J. Frisch, M. J., J. Phys. Chem., 1994, 98, 11623.

    Article  CAS  Google Scholar 

  16. Frisch, M. J. et al. Gaussian 94, Gaussian, Inc.: Pittsburgh PA, USA, 1995.

    Google Scholar 

  17. Stevens, W. J.; Basch, H.; Krauss, M. J. Chem. Phys. 1984, 81, 6026. (b) Stevens, W. J.; Krauss, M.; Basch, H.; Jasien, P. G. Can. J. Chem. 1992, 70, 612.

    Article  Google Scholar 

  18. Serron, S.; Nolan, S. P.; Moloy, K. G. Organometallics 1996, 15, 4301. (b) Serron, S.; Luo, L.; Stevens, E. D.; Nolan, S. P.; Jones, N. L.; Fagan, P. J. Organometallics 1996, 15, 5209.

    CAS  Google Scholar 

  19. Yates, B.; Musaev, D. G.; Basch, H.; Morokuma, K. to be published.

    Google Scholar 

  20. Basch, H.; Musaev, D. G.; Morokuma, K.; Fryzuk, M. D.; Love, J. B.; Seidel, W. W.; Albinati, A.; Koetzle, T. F.; Klooster, W. T.; Mason, S. A.; Eckert, J. J. Am. Chem. Soc. 1999, 121, 523–528.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Kluwer Academic Publishers

About this chapter

Cite this chapter

Musaev, D.G., Basch, H., Morokuma, K. (2002). The N≡N Triple Bond Activation by Transition Metal Complexes. In: Maseras, F., Lledós, A. (eds) Computational Modeling of Homogeneous Catalysis. Catalysis by Metal Complexes, vol 25. Springer, Boston, MA. https://doi.org/10.1007/0-306-47718-1_13

Download citation

  • DOI: https://doi.org/10.1007/0-306-47718-1_13

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4020-0933-4

  • Online ISBN: 978-0-306-47718-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics