Skip to main content

Part of the book series: Developments in Paleoenvironmental Research ((DPER,volume 2))

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Altabet, M. A. & R. François, 1993. The use of nitrogen isotopic ratio for reconstruction of past changes in surface ocean nutrient utilization. In Zahn, R., T. R. Pederson, M. Kaminshi & L. Labeyrie (eds.) NATO ASI Series, Series I: Global Environmental Change Vol. 17. Carbon Cycling in the Glacial Ocean; Constraints on the Ocean’s Role in Global Change; Quantitative Approaches in Paleoceanography. Springer Verlag: 281–306.

    Google Scholar 

  • Altabet, M. A. & R. François, 1994. Sedimentary nitrogen isotopic ratio as a recorder for surface ocean nitrate utilization. Global Biogeochem. Cycles 8: 103–116.

    Article  Google Scholar 

  • Ariztegui, D., P. Farrimond & J. A. McKenzie, 1996a. Compositional variations in sedimentary lacustrine organic matter and their implications for high Alpine Holocene environmental changes; Lake St. Moritz, Switzerland. Org. Geochem. 24: 453–461.

    Article  Google Scholar 

  • Ariztegui, D., D. J. Hollander & J. A. McKenzie, 1996b. Algal dominated lacustrine organic matter can be either Type I or Type II: Evidence for biological, chemical and physical controls on organic matter quality. In Mello, M. R., L. A. F. Trindade & M. H. R. Hessel (eds.) ALAGO Special Publication: Selected Papers from 4th Latin American Congress on Organic Geochemistry. Bucaramanga, Columbia: 12–16.

    Google Scholar 

  • Aucour, A.-M., C. Hillaire-Marcel & R. Bonnefille, 1993. A 30,000 year record of 13C and 18O changes in organic matter from an equatorial peatbog. In Swart, P. K., K.C. Lohmann, J. McKenzie & S. Savin (eds.) Climate Change in Continental Isotopic Records. Am. Geophys. Un. Geophys. Monogr. 78, Washington (DC): 343–351.

    Google Scholar 

  • Barnes, M. A. & W. C. Barnes, 1978. Organic compounds in lake sediments. In Lerman, A. (ed.) Lakes-chemistry, Geology, Physics. Springer-Verlag, New York: 127–152.

    Google Scholar 

  • Barwise, T., S. Hay & J. Thrasher, 1996. Contamination of shallow cores: A common problem. In Schumacher, D. & M. A. Abrams (eds.) Hydrocarbon Migration and its Near-surface Expression. AAPG Memoir 66, Tulsa: 359–362.

    Google Scholar 

  • Bernasconi, S. M., A. Barbieri & M. Simona, 1997. Carbon and nitrogen isotope variations in sedimenting organic matter in Lake Lugano. Limnol. Oceanogr. 42: 1755–1765.

    Google Scholar 

  • Beuning, K. R. M., K. Kelts, E. Ito & T. C. Johnson, 1997. Paleohydrology of Lake Victoria, East Africa, inferred from 18O/16O ratios in sediment cellulose. Geology 25: 1083–1086.

    Article  Google Scholar 

  • Bird, M. I., R. E. Summons, M. K. Gagan, Z. Roksandic, L. Dowling, J. Head, L. K. Fifield, R. G. Cresswell & D. P. Johnson, 1995. Terrestrial vegetation change inferred from n-alkane δ13C analysis in the marine environment. Geochim. Cosmochim. Acta 59: 2853–2857.

    Article  Google Scholar 

  • Blumer, M., R. R. L. Guillard & T. Chase, 1971, Hydrocarbons of marine plankton. Mar. Biol. 8: 183–189.

    Article  Google Scholar 

  • Bourbonniere, R. A. & P. A. Meyers, 1996. Anthropogenic influences on hydrocarbon contents of sediments deposited in eastern Lake Ontario since 1800. Environ. Geol. 28: 22–28.

    Article  Google Scholar 

  • Boutton, T. W., 1991. Stable isotope ratios of natural materials: I. Sample preparation and mass spectrometric analysis. In Coleman, D. C. & B. Fry (eds.) Carbon Isotope Techniques. Academic Press, New York: 155–171.

    Google Scholar 

  • Brand, W. A., 1996. High-precision isotope ratio monitoring techniques in mass spectrometry. J. Mass Spectr. 31:223–235.

    Google Scholar 

  • Brenna, J. T., T. N. Corso, H. J. Tobias & R. J. Caimi, 1997. High-precision continuous-flow isotope ratio mass spectrometry. Mass Spectr. Rev. 16: 227–258.

    Article  Google Scholar 

  • Brenner, M., T. J. Whitmore, J. H. Curtis, D. A. Hodell & C. L. Schelske, 1999. Stable isotope δ13C and δ15N) signatures of sedimented organic matter as indicators of historic lake trophic state. J. Paleolimnol. 22: 205–221.

    Article  Google Scholar 

  • Brincat, D., K. Yamada, R. Ishiwatari, H. Uemura & H. Naraoka, 2000. Molecular-isotopic stratigraphy of long-chain n-alkanes in Lake Baikal Holocene and glacial age sediments. Org. Geochem. 31: 287–294.

    Article  Google Scholar 

  • Burgoyne, T. W. & J. M. Hayes, 1998. Quantitative production of H2 by pyrolysis of chromatographic effluents. Anal. Chem. 70: 5136–5141.

    Article  Google Scholar 

  • Calvert, S. E., B. Nielsen & M. R. Fontugne, 1992. Evidence from nitrogen isotope ratios for enhanced productivity during formation of eastern Mediterranean sapropels. Nature 359: 223–225.

    Article  Google Scholar 

  • Collister, J. W., G. Rieley, B. Stern, G. Eglinton & B. Fry, 1994. Compound-specific δ13C analyses of leaf lipids from plants with differing carbon dioxide metabolisms. Org. Geochem. 21: 619–627.

    Google Scholar 

  • Cranwell, P. A., 1973. Chain-length distribution of n-alkanes from lake sediments in relation to post-glacial environmental change. Freshwater Biol. 3: 259–265.

    Google Scholar 

  • Cranwell, P. A., 1982. Lipids of aquatic sediments and sedimenting particulates. Progr. Lipid Res. 21: 271–308.

    Google Scholar 

  • Cranwell, P. A., G. Eglinton & N. Robinson, 1987. Lipids of aquatic organisms as potential contributors to lacustrine sediments-II. Org. Geochem. 11: 513–527.

    Google Scholar 

  • Dean, W. E., 1974. Determination of carbonate and organic matter in calcareous sediments and sedimentary rocks by loss on ignition: comparison with other methods. J. Sed. Petrol. 44: 242–248.

    Google Scholar 

  • Dean, W. E., 1999. The carbon cycle and biogeochemical dynamics in lake sediments. J. Paleolimnol. 21: 375–393.

    Article  Google Scholar 

  • Dean, W. E., T. S. Ahlbrandt, R. Y. Anderson & J. P. Bradbury, 1996. Regional aridity in North America during the middle Holocene. The Holocene 6: 145–155.

    Google Scholar 

  • DeNiro, M. J. & S. Epstein, 1981. Influence of diet on the distribution of nitrogen isotopes in animals. Geochim. Cosmochim. Acta 45: 341–351.

    Google Scholar 

  • Eglinton, G. & R. J. Hamilton, 1963. The distribution of alkanes. In Swaine, T. (ed.) Chemical Plant Taxonomy. Academic: 187–217.

    Google Scholar 

  • Eglinton, G. & R. J. Hamilton, 1967. Leaf epicuticular waxes. Science 156: 1322–1335.

    Google Scholar 

  • Engleman, E. E., L. L. Jackson & D. R. Norton, 1985. Determination of carbonate carbon in geological materials by coulometric titration. Chem. Geol. 53: 125–128.

    Article  Google Scholar 

  • Ertel, J. R. & J. I. Hedges, 1984. The lignin component of humic substances: Distribution among soil and sedimentary humic, fulvic, and base-insoluble fractions. Geochim. Cosmochim. Acta 48: 2065–2074.

    Article  Google Scholar 

  • Ertel, J. R. & J. I. Hedges, 1985. Sources of sedimentary humic substances: vascular plant debris. Geochim. Cosmochim. Acta 49: 2097–2107.

    Article  Google Scholar 

  • Espitalié, J., G. Deroo & F. Marquis, 1985a. La pyrolyse Rock Eval et ses applications. 2de partie. Revue de l’ Institut Français du Pétrole 40: 755–784.

    Google Scholar 

  • Espitalié, J., G. Deroo & F. Marquis, 1985b. La pyrolyse Rock Eval et ses applications. 3éme partie. Revue de 1’Institut Français du Pétrole 41: 73–89.

    Google Scholar 

  • Fogel, M. L. & L. A. Cifuentes, 1993. Isotope fractionation during primary production. In Engel, M. H. & S. A. Macko (eds.) Organic Geochemistry: Principles and Applications. Plenum Press, New York: 73–98.

    Google Scholar 

  • François, R., M. A. Altabet & L. H. Burckle, 1992. Glacial to interglacial changes in surface nitrate utilization in the Indian sector of the Southern Ocean as recorded by sediment δ15N. Paleoceanography 7: 589–606.

    Google Scholar 

  • Giger, W., C. Schaffner & S. G. Wakeham, 1980. Aliphatic and olefinic hydrocarbons in recent sediments of Greifensee, Switzerland. Geochim. Cosmochim. Acta 44: 119–129.

    Article  Google Scholar 

  • Gu, B., C. L. Schelske & M. Brenner, 1996. Relationship between sediment and plankton isotope ratios and primary productivity in Florida Lakes. Can. J. Fish. Aquat. Sci. 53: 875–883.

    Google Scholar 

  • Hassan, K. M., J. B. Swinehart & R. F. Spalding, 1997. Evidence for Holocene environmental changefrom C/N ratios and δ13C and δ15values in Swan Lake sediments, western Sand Hills, Nebraska. J. Paleolimnol. 18: 121–130.

    Article  Google Scholar 

  • Hedges, J. I. & D. C. Mann, 1979. The characterization of plant tissues by their lignin oxidation products. Geochim. Cosmochim. Acta 43: 1803–1807.

    Google Scholar 

  • Hedges, J. I. & P. L. Parker, 1976. Land-derived organic matter in surface sediments from the Gulf of Mexico. Geochim. Cosmochim. Acta 40: 1019–1029.

    Article  Google Scholar 

  • Hedges, J. I., J. R. Ertel & E. B. Leopold, 1982. Lignin geochemistry of a Late Quaternary core from Lake Washington. Geochim. Cosmochim. Acta 46: 1869–1877.

    Article  Google Scholar 

  • Herezeg, A., 1988. Early diagenesis of organic matter in lake sediments: A stable carbon isotope study of pore waters. Chem. Geol. 72: 199–209.

    Google Scholar 

  • Hilkert, A. W., C. D. Douthitt, H. J. Schlüter & A. W. Brand, 1999. Isotope ratio monitoring gas chromatography/mass spetrometry of D/H by high temperature conversion isotope ratio mass spectrometry. Rapid Commun. Mass Spectrom. 13: 1226–1230.

    Article  Google Scholar 

  • Hodell, D. A. & C. L. Schelske, 1998. Production, sedimentation, and isotopic composition of organic matter in Lake Ontario. Limnol. Oceanogr. 43: 200–214.

    Google Scholar 

  • Hollander, D. J. & J. A. MacKenzie, 1991. CO2 control on carbon-isotope fractionation during aqueous photosynthesis: A paleo-pCO2 barometer. Geology 19: 929–932.

    Article  Google Scholar 

  • Hollander, D. J., J. A. MacKenzie & H. L. ten Haven, 1992. A 200 year sedimentary record of progressive eutrophication in Lake Greifen (Switzerland): Implications for the origin of organic-carbon rich sediments. Geology 20: 825–828.

    Article  Google Scholar 

  • Huang, Y, K. H. Freeman, T. I. Eglinton & F. A. Street-Perrott, 1999b. δ13C analyses of individual lignin phenols in Quaternary lake sediments: A novel proxy for deciphering past terrestrial vegetation changes. Geology 27: 471–474.

    Article  Google Scholar 

  • Huang, Y., F. A. Street-Perrott, R. A. Perrott, P. Metzger & G. Eglinton, 1999a Glacial-interglacial environmental changes inferred from molecular and compound-specific δ13C analyses of sediment from Sacred Lake, Mt. Kenya. Geochim. Cosmochim. Acta 63: 1383–1404.

    Article  Google Scholar 

  • Huffman, E. W. D., 1977. Performance of a new carbon dioxide coulometer. Microchem. J. 22: 567–573.

    Google Scholar 

  • Johns, R. B. (ed.), 1986. Biological Markers in the Sedimentary Record. Elsevier, Amsterdam.

    Google Scholar 

  • Kaushal, S. & M. W. Binford, 1999. Relationship between C: N ratios of lake sediments, organic matter sources, and historical deforestation of Lake Pleasant, Massachusetts, USA. J. Paleolimnol. 22: 439–442.

    Article  Google Scholar 

  • Keeley,J.E. & D. R. Sandquist, 1992. Carbon: freshwater plants. Plant Cell Environ. 15: 1021–1035.

    Google Scholar 

  • Kendall, C., 1998. Tracing nitrogen sources and cycling in catchments. In Kendall, C. & J. J. McDonnell (eds.) Isotope Tracers in Catchment Hydrology. Elsevier: 519–576.

    Google Scholar 

  • Kendall, C. & E. Grim, 1990. Combustion tube method for measurement of nitrogen isotope ratios using calcium oxide for total removal of carbon dioxide and water. Anal. Chem. 62: 526–529.

    Article  Google Scholar 

  • Laws, E. A., B. N. Popp, R. R. Bidigare, M. C. Kennicutt & S. A. Macko, 1995. Dependence of phytoplankton isotopic composition on growth rate and [CO2]aq: Theoretical considerations and experimental results. Geochim. Cosmochim. Acta 59: 1131–1138.

    Article  Google Scholar 

  • Leopold, E. B., R. Nickman, J. I. Hedges & J. R. Ertel, 1982. Pollen and lignin records of Late Quaternary vegetation, Lake Washington. Science 218: 1305–1307.

    Google Scholar 

  • Krishnamurthy, R. V, K. A. Syrup, M. Baskaran & A. Long, 1995. Late glacial climate record of midwestern United States from the hydrogen isotope ratio of lake organic matter. Science 269: 1565–1567.

    Google Scholar 

  • Macko, S. A., M. H. Engel, G. Hartley, P. Hatcher, R. Helleur, P. Jackman & J. A. Silfer, 1991. Isotopic compositions of individual carbohydrates as indicators of early diagenesis of organic matter in peat. Chem. Geol. 93: 147–161.

    Article  Google Scholar 

  • Meier-Augcnstein, W., 1999. Applied gas chromatography coupled to isotope ratio mass spectrometry. J. Chromatogr. 842: 351–371.

    Google Scholar 

  • Meyers, P. A., 1987. Chronic contamination of lakes by petroleum hydrocarbons: The sedimentary record. In Vandermeulen, J. H. & S. E. Hrudy (eds.) Oil in Freshwater: Chemistry, Biology, Countermeasure Technology. Pergamon Press, New York: 149–160.

    Google Scholar 

  • Meyers, P. A., 1990. Impacts of regional Late Quaternary climate changes on the deposition of sedimentary organic matter in Walker Lake Nevada. Palaeogeogr. Palaeoclim. Palaeoecol. 78: 229–240.

    Google Scholar 

  • Meyers, P. A., 1994. Preservation of source identification of sedimentary organic matter during and after deposition. Chem. Geol. 144: 289–302.

    Google Scholar 

  • Meyers. P. A., 1997. Organic geochemical proxies of paleoccanographic, paleolimnologic, and paleoclimatic processes. Org. Geochem. 27: 213–250.

    Article  Google Scholar 

  • Meyers, P. A. & S. Horie, 1993. An organic carbon isotopic record of glacial-postglacial change in atmospheric pCO2 in the sediments of Lake Biwa, Japan. Palaeogeogr. Palaeoclim. Palaeoecol. 105: 171–178.

    Google Scholar 

  • Meyers, P. A. & R. Ishiwatari, 1993. Lacustrine organic geochemistry-an overview of indicators of organic matter sources and diagenesis in lake sediments. Org. Geochem. 20: 867–900.

    Google Scholar 

  • Meyers, P. A. & E. Lallier-Verges, 1999. Lacustrine sedimentary organic matter records of Late Quaternary paleoclimates. J. Paleolimnol. 21: 345–372.

    Article  Google Scholar 

  • Meyers, P. A. & J. E. Silliman, 1996. Organic matter in Pleistocene to Quaternary turbidites from Sites 897, 898, 899, and 900, Iberia Abyssal Plain. In Whitmarsh. R. B., D. S. Sawyer, A. Klaus & D. G. Masson (eds.) Proc. ODP, Init. Repts., College Station, TX (Ocean Drilling Program) 149: 305–313.

    Google Scholar 

  • Meyers, P. A. & N. Takeuchi, 1981. Environmental changes in Saginaw Bay, Lake Huron, recorded by geolipid contents of sediments deposited since 1800. Environ. Geol. 3: 257–266.

    Google Scholar 

  • Meyers, P. A., M. J. Leenheer & R. A. Bourboniere, 1995. Diagenesis of vascular plant organic matter components during burial in lake sediments. Aq. Geochem. 1: 35–52.

    Google Scholar 

  • Minagawa, M. & E. Wada, 1984. The stepwise enrichment of 15N along foodchains: furtherevidence and the relation between δ15N and animal age. Geochim. Cosmochim. Acta 48: 1135–1140.

    Article  Google Scholar 

  • Müller, H., 1987. Hydrocarbons in the freshwater environment. A literature review. Arch. Hydrobiol. Beihandl. Ergib. Limnol. 24: 1–69.

    Google Scholar 

  • Müller, G. & M. Gastner, 1971. The “Karbonat-Bombe”, a simple device for the determination of the carbonate content in sediments, soils and other materials. Neues Jb. Mineralogie 10: 466–469.

    Google Scholar 

  • Nakai, N. & M. Koyama, 1987. Reconstruction of paleoenvironment from the view-points of the inorganic constituents, C/N ratio and carbon isotopic ratio in the 1400m core taken from Lake Biwa. In Horie, S. (ed.) History of Lake Biwa. Kyoto Univ. Contrib, Kyoto: 137–156.

    Google Scholar 

  • O’Leary, M. H., 1988. Carbon isotopes in photosynthesis. Bioscience 38: 328–336.

    Google Scholar 

  • Peters, K. E., 1986. Guidelines for evaluating petroleum source rock using programmed pyrolysis. AAPG Bull. 70: 318–329.

    Google Scholar 

  • Peters, K. E., R. E. Sweeney & I. R. Kaplan, 1978. Correlation of carbon and nitrogen stable isotope ratios in sedimentary organic matter. Limnol. Oceanogr. 23: 598–604.

    Google Scholar 

  • Peterson, B. J. & B. Fry, 1987. Stable isotopes in ecosystem studies. Ann. Rev. Ecol. System 18: 293–320.

    Article  Google Scholar 

  • Peterson, B. J. & R. W. Howarth, 1987. Sulfur, carbon, and nitrogen isotopes used to trace organic matter flow in the salt-marsh estuaries of Sapelo Island, Georgia. Limnol. Oceanogr. 32: 1195–1213.

    Google Scholar 

  • Prahl, F. G., J. R. Ertel, M. A. Goñi, M. A. Sparrow & B. Eversmeyer, 1994. Terrestrial organic carbon contributions to sediments on the Washington margin. Geochim. Cosmochim. Acta 58: 3035–3048.

    Article  Google Scholar 

  • Prokopenko, A., D. F. Williams, P. Kavel & E. Karabanov, 1993. The organic indexes in the surface sediments of Lake Baikal water system and the processes controlling their variation. IPPCCE Newslett. 7: 49–55.

    Google Scholar 

  • Qiu, L., D. F. Williams, A. Gvorzdkov, E. Karabanov & M. Shimaraeva, 1993. Biogenic silica accumulation and paleoproductivity in the northern basin of Lake Baikal during the Holocene. Geology 21: 25–28.

    Article  Google Scholar 

  • Rea, D. K., R. A. Bourbonniere & P. A. Meyers, 1980. Southern Lake Michigan sediments: Changes in accumulation rates, mineralogy, and organic content. J. Great Lakes Res. 6: 321–330.

    Article  Google Scholar 

  • Rieley, G., R. J. Collier, D. M. Jones & G. Eglinton, 1991. The biogeochemistry of Ellesmere Lake, UK-I: source correlation of leaf wax inputs to the sedimentary record. Org. Geochem. 17: 901–912.

    Google Scholar 

  • Rullkötter, J., 2000. Organic matter: The driving force for early diagenesis. In Schulz, H. D. & M. Zabel (ed.) Marine Geochemistry. Springer Verlag, Berlin: 129–172.

    Google Scholar 

  • Sarazin, G., G. Michard, I. Al Gharib & M. Bernat, 1992. Sedimentation rate and early diagenesis of particulate organic nitrogen and carbon in Aydat Lake (Puy de Dôme, France). Chem. Geol. 98: 307–316.

    Article  Google Scholar 

  • Sifeddine, A., P. Bertrand, E. Lallier-Verges & A. J. Patience, 1996. Lacustrine organic fluxes and palaeoclimatic variations during the last 15 ka: Lac du Bouchet (Massif Central, France). Quat. Sci. Rev. 15: 203–211.

    Google Scholar 

  • Takahashi, K., T. Yoshioka, E. Wada & M. Sakamoto, 1990. Temporal variations in carbon isotope ratio of phytoplankton in an eutrophic lake. J. Plankton. Res. 12: 799–808.

    Google Scholar 

  • Talbot, M. R. & T. Laerdal, 2000. The Lake Pleistocene-Holocene palaeolimnology of Lake Victoria, East Africa, based upon elemental and isotopic analyses of sedimentary organic matter. J. Paleolimnol.23: 141–164.

    Article  Google Scholar 

  • Talbot, M. R. & D. A. Livingstone, 1989. Hydrogen index and carbon isotopes of lacustrine organic matter as lake level indicators. Palaeogeogr. Palaeoclim. Palaeoecol. 70: 121–137.

    Google Scholar 

  • Talbot, M. R. & T. Johannessen, 1992. A high resolution palaeoclimatic record for the last 27,500 years in tropical West Africa from the carbon and nitrogen isotopic composition of lacustrine organic matter. Earth Planet. Sci. Lett. 110: 23–37.

    Article  Google Scholar 

  • Tenzer, G. E., P. A. Meyers & P. A. Knoop, 1997. Sources and distribution of organic and carbonate carbon in surface sediments of Pyramid Lake, Nevada. J. Sed. Res. 67: 887–893.

    Google Scholar 

  • Teranes, J. L. & S. M. Bernasconi, 2000. The record of nitrate utilization and productivity limitation provided by δ15N values in lake organic matter — A study of sediment trap and core sediments from Baldeggersee, Switzerland. Limnol. Oceanogr. 45: 801–813.

    Article  Google Scholar 

  • Thompson, S. & G. Eglinton, 1978. The fractionation of a recent sediment for organic geochemical analyses. Geochim. Cosmochim. Acta 42: 199–207.

    Google Scholar 

  • Verardo, D. J., P. N. Froelich & A. McIntyre, 1990. Determination of organic carbon and nitrogen in marine sediments using the Carlo Erba NA 1500 analyzer. Deep-Sea Res. 37: 157–165.

    Article  Google Scholar 

  • Wakeham, S. G., 1976. A comparative survey of petroleum hydrocarbons in lake sediments. Mar. Poll. Bull. 7: 206–211.

    Article  Google Scholar 

  • Wakeham, S. G., 1977a. A characterization of the sources of petroleum hydrocarbons in Lake Washington. J. Water Poll. Cont. Fed. 49: 1680–1687.

    Google Scholar 

  • Wakeham, S. G., 1977b. Hydrocarbon budgets for Lake Washington. Limnol. Oceanogr. 22: 952–957.

    Article  Google Scholar 

  • Wilkes, H., A. Ramrath & J. F. W. Negendank, 1999. Organic geochemical evidence for environmental changes since 34,000 yrs BP from Lago di Mezzano, central Italy. J. Paleolimnol. 22: 349–365.

    Article  Google Scholar 

  • White, J. W. C., J. R. Lawrence & W. S. Broecker, 1994. Modeling and interpreting D/H ratios in tree rings: A test case of white pine in the northeastern United States. Geochim. Cosmochim. Acta 58: 851–862.

    Google Scholar 

  • Yamamuro, M. & H. Kayanne, 1995. Rapid direct determination of organic carbon and nitrogen in carbonate-bearing sediments with a Yanaco MT-5 CHN analyzer. Limnol. Oceanog. 40: 1001–1005.

    Google Scholar 

  • Xie, S., C. J. Nott, L. A. Avsejs, F. Volders, D. Maddy, F. M. Chambers, A. Gledhill, J. F. Carter & R. P. Evershed, 2000. Palaeoclimate records in compound-specific δD values of a lipid biomarker in ombrotrophic peat. Org. Geochem. 31: 1053–1057.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Kluwer Academic Publishers

About this chapter

Cite this chapter

Meyers, P.A., Teranes, J.L. (2002). Sediment Organic Matter. In: Last, W.M., Smol, J.P. (eds) Tracking Environmental Change Using Lake Sediments. Developments in Paleoenvironmental Research, vol 2. Springer, Dordrecht. https://doi.org/10.1007/0-306-47670-3_9

Download citation

  • DOI: https://doi.org/10.1007/0-306-47670-3_9

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-1-4020-0628-9

  • Online ISBN: 978-0-306-47670-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics