Skip to main content

Inorganic Geochemical Methods in Palaeolimnology

  • Chapter

Part of the Developments in Paleoenvironmental Research book series (DPER,volume 2)

Keywords:

  • Lake
  • sediment
  • geochemistry
  • palaeolimnology
  • trace elements
  • environmental change
  • human impact

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/0-306-47670-3_5
  • Chapter length: 59 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   129.00
Price excludes VAT (USA)
  • ISBN: 978-0-306-47670-9
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   169.00
Price excludes VAT (USA)
Hardcover Book
USD   169.99
Price excludes VAT (USA)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Achterberg, E. P., C. M. G. van den Berg, M. Boussemart & W. Davison, 1997. Speciation and cycling of trace metals in Esthwaite Water: a productive English lake with seasonal deep-water anoxia. Geoch. Cosmoch. Acta 61: 5233–5253.

    CrossRef  Google Scholar 

  • Allen, S. E., H. M. Grimshaw, J. A. Parkinson & C. Quarmby, 1974. Chemical Analysis of Ecological Materials. Blackwell Scientific, Oxford, 565 pp.

    Google Scholar 

  • Avarado, J. & R. Jaffé, 1998. Tube in flame atomisation: a way of enhancing detection limits in flame atomic absorption spectrometry. J. Analytical Atomic Spectrom. 13: 37–40.

    Google Scholar 

  • Anderson, T. & L. Håkanson, 1992. Mercury content in lake sediments and suspended matter — temporal variation and relation to water chemistry. Hydrobiologia 235/236: 685–696.

    Google Scholar 

  • American Public Health Association (APHA), American Water Works Association and Water Pollution Control Federation, 1980. Standard Methods for the Examination of Water and Wastewater. 15th Edition, 415 pp.

    Google Scholar 

  • Appleby, P. G., 1997. Sediment records of fallout radionuclides and their application to studies of sediment-water interactions. Wat. Air Soil Pollut. 99: 573–586.

    Google Scholar 

  • Appleby, P. G., F. Oldfield, R. Thompson & P. Huttunen, 1979. 210Pb dating of annually laminated lake sediments from Finland. Nature 280: 53–54.

    CrossRef  Google Scholar 

  • Aston, S. R., D. Bruty, R. Chester & R. C. Padgham, 1973. Mercury in lake sediments: a possible indicator of technological growth. Nature 241: 450–451.

    CrossRef  Google Scholar 

  • Baker, L. A., D. R. Engstrom & P. L. Brezonik, 1992. Recent sulfur enrichment in the sediments of Little Rock Lake, Wisconsin. Limnol. Oceanogr. 37: 689–702.

    Google Scholar 

  • Ball, D. F., 1964. Loss-on-ignition as an estimate of organic matter and organic carbon in non-calcareous soils. J. Soil. Sci. 15: 84–92.

    Google Scholar 

  • Battarbee, R. W., 1980. Diatoms in lake sediments. In Berglund, B. E. (ed.) Palaeohydrological Changes in the Temperate Zone in the Last 15,000 years, Subproject B. Lake and Mire Environments, IGCP Project 158. University of Lund, Department of Quaternary Geology.

    Google Scholar 

  • Baudo, R., 1989. Uncertainty in description of sediment chemical composition. Hydrobiologia 176/177: 441–448.

    CrossRef  Google Scholar 

  • Belzile, N., J. Pizzaro, M. Filella & J. Buffle, 1996. Sediment diffusive fluxes of Fe, Mn and P in a eutrophic lake: contributions from lateral vs bottom sediments. Aquat. Sci. 58: 327–354.

    CrossRef  Google Scholar 

  • Benoit, G. & H. F. Hemond, 1991. Evidence for diffusive redistribution of 210Pb in lake sediments particle concentration effect for lead and other metals in fresh waters based on ultraclean techniques. Geoch. Cosmoch. Acta 59: 2677–2687.

    Google Scholar 

  • Benoit, G. & T. F. Rozan, 1999. The influence of size distribution on the particle concentration effect and trace metal partitioning in rivers. Geoch. Cosmoch. Acta 63: 113–127.

    CrossRef  Google Scholar 

  • Bertine, K. K. & M. F. Mendeck, 1978. Industrialization of New Haven, Conn., as recorded in reservoir sediments. Envir. Sci. Technol. 12: 201–207.

    Google Scholar 

  • Birks, H. J. B., 1987. Multivariate analysis in geology and geochemistry: an introduction. Chemometric and Intelligent Laboratory Systems 2: 15–28.

    Google Scholar 

  • Blais, J. M. & J. Kalff, 1993. Atmospheric loading of Zn, Cu, Ni, Cr and Pb to lake sediments: the role of catchment, lake morphometry, and physico-chemical properties of the elements. Biogeochem. 23: 1–22.

    CrossRef  Google Scholar 

  • Borg, H., P. Andersson & K. Johansson, 1989. Influence of acidification of metal fluxes in Swedish forest lakes. Sci. Total Envir. 87/88: 241–253.

    CrossRef  Google Scholar 

  • Boudreau, B. P., 1999. Metals and models: diagenetic modelling in freshwater lacustrine sediments. J. Paleolim. 22: 227–251.

    CrossRef  Google Scholar 

  • Boyle, J. F., 1984. The Origin and Geochemistry of the Metalliferous Sediments of the Troodos Massif, Cyprus. Ph.D. Thesis. University of Edinburgh, 200 pp.

    Google Scholar 

  • Boyle, J. F., 1994. Acidification and sediment aluminium: palaeolimnological interpretation. J. Paleolim. 12: 181–187.

    CrossRef  Google Scholar 

  • Boyle, J. F., 2000. Rapid elemental analysis of sediment samples by isotope source XRF. J. Paleolim. 23: 213–221.

    CrossRef  Google Scholar 

  • Boyle, J. F. & H. J. B. Birks, 1999. Predicting heavy metal concentrations in the surface sediments of Norwegian headwater lakes from atmospheric deposition: an application of a simple sedimentwater partitioning model. Wat. Air Soil Pollut. 114: 27–51.

    Google Scholar 

  • Boyle, J. F., A. W. Mackay, N. L. Rose, R. J. Flower & P. G. Appleby, 1998. Sediment heavy metal record in Lake Baikal: natural and anthropogenic sources. J. Paleolim. 20: 135–150.

    CrossRef  Google Scholar 

  • Boyle, J. F., N. L. Rose, H. Bennion, H. Yang & P. G. Appleby, 1999. Environmental impact in the Jianghan Plain: evidence from lake sediments. Wat. Air Soil Pollut. 112: 21–40.

    Google Scholar 

  • Brezonik, P. L. & D. R. Engstrom, 1998. Modern and historic accumulation rates of phosphorus in Lake Okeechobee, Florida. J. Paleolim. 20: 31–46.

    Google Scholar 

  • Brubaker, H. U. & P. M. Anderson, 1993. A 12000 year record of vegetation change and soil development from Wien Lake, central Alaska. Can. J. Botany 71: 1133–1142.

    Google Scholar 

  • Bryan, W. B., L. W. Finger & F. Chayes, 1969. Estimating proportions in petrographic mixing equations by least-squares approximation. Science 163: 926–927.

    Google Scholar 

  • Bryant, C. L., J. G. Farmer, A. B. MacKenzie, A. E. Bailey-Watts & A. Kirika, 1997. Manganese behaviour in the sediments of diverse Scottish freshwater lochs. Limnol. Oceanogr. 42: 918–929.

    Google Scholar 

  • Buckley, D. E. & R. E. Cranston, 1971. Atomic absorption analysis of 18 elements from a single decomposition of aluminosilicate. Chem. Geol. 7: 273–284.

    CrossRef  Google Scholar 

  • Buffle, J. & G. G. Leppard, 1995a. Characterization of aquatic colloids and macromolecules. 1. Structure and behaviour of colloidal material. Envir. Sci. Technol. 29: 2169–2175.

    Google Scholar 

  • Buffle, J. & G. G. Leppard, 1995b. Characterization of aquatic colloids and macromolecules. 2. Key role of physical structures on analytical results. Envir. Sci. Technol. 29: 2175–2184.

    Google Scholar 

  • Buffle, J., K. J. Wilkinson, S. Stoll, M. Filella & J. W. Zhang, 1998. A generalized description of aquatic colloidal interactions: the three-colloidal component approach. Envir. Sci. Technol. 32: 2887–2899.

    Google Scholar 

  • Carignan, R. & J. O. Nriagu, 1985. Trace metal deposition and mobility in the sediments of two lakes near Sudbury, Ontario. Geoch. Cosmoch. Acta 49: 1753–1764.

    Google Scholar 

  • Carignan, R. & A. Tessier, 1985. Zinc deposition in acid lakes: the role of diffusion. Science 228: 1524–1526.

    Google Scholar 

  • Carignan, R. & A. Tessier, 1988. The co-diagenesis of sulfur and iron in acid lake sediments of southwestern Québec. Geoch. Cosmoch. Acta 52: 1179–1188.

    CrossRef  Google Scholar 

  • Catterick, T., H. Handley & S. Merson, 1995. Analytical Accuracy in ICP-MS Using Isotope Dilution and its Application to Reference Materials. Atomic Spectroscopy 16: 229–234.

    Google Scholar 

  • Collins, A. L., D. E. Walling & G. J. L. Leeks, 1996. Composite fingerprinting of the spatial source of fluvial suspended sediment: a case study of the Exe and Severn River basins, UK. In: Proceedings CNRS Conference on floods, slopes and river beds, Paris, 1995. Environment 2: 41–54.

    Google Scholar 

  • Collins, A. L., D. E. Walling & G. J. L. Leeks, 1997. Use of the geochemical record preserved in floodplain deposits to reconstruct recent changes in river basin sediment sources. Geomorphology 19: 151–167.

    CrossRef  Google Scholar 

  • Coleman, S. M., J. A. Peck, E. B. Karabanov, S. J. Carter, J. P. Bradbury, J. W. King & D. F. Williams, 1995. Continental climate response to orbital forcing from biogenic silica records. Nature 378: 769–771.

    CrossRef  Google Scholar 

  • Cornett, R. J., L. Chant & R. D. Evans, 1989. Nickel diagenesis and partitioning in lake sediments. Sci. Total. Envir. 87/88: 157–170.

    Google Scholar 

  • Cornett, R. J., L. Chant & B. Risto, 1992. Arsenic transport between water and sediments. Hydrobiologia 235/236: 533–544.

    CrossRef  Google Scholar 

  • Cornwell, J. C., 1986. Diagenetic trace-metal profiles in Arctic lake sediments. Envir. Sci. Technol. 20: 299–303.

    Google Scholar 

  • Crecelius, E. A. & D. Z. Piper, 1973. Particulate lead contamination recorded in sedimentary cores from Lake Washington, Seattle. Envir. Sci. Technol. 7: 1053–1055.

    Google Scholar 

  • Crusius, J. & R. F. Anderson, 1995. Evaluating the mobility of 137Cs. 239+240Pu and 210Pb from their distributions in laminated lake sediments. J. Paleolim. 13: 119–141.

    Google Scholar 

  • Cuthbert, I. D. & J. Kalff, 1993. Empirical models for estimating the concentrations and exports of metals in rural rivers and streams. Wat. Air Soil Pollut. 71: 205–230.

    Google Scholar 

  • Davis, J. C., 1986. Statistics and Data Analysis in Geology. Wiley, New York, 2nd Ed, 646 pp.

    Google Scholar 

  • Davis, R. B., C. T. Hess, S. A. Norton, D. W. Hanson, K. D. Hoagland & D. S. Anderson, 1984. 137Cs and 210Pb dating of sediments from soft-water lakes in New England (USA) and Scandinavia, a failure of 137Cs dating. Chem. Geol. 44: 151–185.

    Google Scholar 

  • Davis, R. B. & S. A. Norton, 1978. Paleolimnologic studies of human impact on lakes in the United States, with emphasis on recent research in New England. Pol. Arch. Hydrobiol. 25: 99–115.

    Google Scholar 

  • Davis, R. B., S. A. Norton, C. T. Hess & D. F. Brakke, 1983. Paleolimnological reconstruction of the effects of atmospheric deposition of acids and heavy metals on the chemistry and biology of lakes in New England and Norway. Hydrobiologia 103: 113–123.

    CrossRef  Google Scholar 

  • Davison, W., 1993. Iron and manganese in lakes. Earth Sci. Rev. 34: 119–163.

    CrossRef  Google Scholar 

  • Dean, W. E., 1974. Determination of carbonate and organic matter in calcareous sediments and sedimentary rocks by loss on ignition: comparison with other methods. J. Sediment. Petrol. 44: 242–248.

    Google Scholar 

  • Dean, W. E., 1981. Carbonate minerals and organic matter in sediments of modern north temperate hard-water lakes. Soc. Econ. Paleont. Mineral. Special Publication 31: 213–231.

    Google Scholar 

  • Dean, W. E., 1997. Rates, timing, and cyclicity of Holocene eolian activity in north-central United States: evidence from varved lake sediments. Geology 25: 331–334.

    CrossRef  Google Scholar 

  • Dean, W. E., 1999. The carbon cycle and biogeochemical dynamics in lake sediments. J. Paleolim. 21: 375–393.

    CrossRef  Google Scholar 

  • Dean, W. E. & E. Gorham, 1998. Magnitude and significance of carbon burial in lakes, reservoirs and peatlands. Geology 26: 535–538.

    CrossRef  Google Scholar 

  • Dean, W. E., E. Gorham & D. J. Swaine, 1988. Geochemistry of surface sediments in the English Lake District. In Round, F. E. (ed.) Algae and the Aquatic Environment: Bristol, England. Biopress Ltd.: 244–271.

    Google Scholar 

  • Dean, W. E., E. Gorham & D. J. Swaine, 1993. Geochemistry of surface sediments of Minnesota lakes. Geol. Soc. Am. Spec. Paper 276: 115–133.

    Google Scholar 

  • Deer, W. A., R. A. Howie & J. Zussman, 1966. An Introduction to the Rock-Forming Minerals. Longman, Harlow, 528 pp.

    Google Scholar 

  • Diamond, M. L., 1999. Development of a fugacity/aquivalence model of mercury dynamics in lakes. Wat. Air Soil Pollut. 111: 337–357.

    Google Scholar 

  • Diamond, M. L., D. Mackay, R. J. Cornett & L. A. Chant, 1990. A model of the exchange of inorganic chemicals between water and sediments. Envir. Sci. Technol. 24: 713–722.

    Google Scholar 

  • Digerfeldt, G., 1972. The post-glacial development of Lake Trummen. Folia limnol. Scand. 16: 1–104.

    Google Scholar 

  • Digerfeldt, G., 1975. The post-glacial development of Ranviken Bay in Lake Immeln. III. Palaeolimnology. Geol. För. Stockh. Förh. 97: 13–28.

    Google Scholar 

  • Dillon, P. J. & R. D. Evans, 1982. Whole-lake lead burdens in sediments of lakes in southern Ontario, Canada. Hydrobiologia 91: 121–130.

    CrossRef  Google Scholar 

  • Dillon, P. J. & H. E. Evans, 1993. A comparison of phosphorus retention in lakes determined from mass balance and sediment core calculations. Wat. Res. 27: 659–668.

    CrossRef  Google Scholar 

  • Dillon, P. J., H. E. Evans & P. J. Scholer, 1988. The effect of acidification on metal budgets of lakes and catchments. Biogeochem. 5: 201–220.

    CrossRef  Google Scholar 

  • Droppo, I. G., G. G. Leppard, D. T. Flannigan & S. N. Liss, 1997. The freshwater floc: a functional relationship of water and organic and inorganic floc constituents affecting suspended sediment properties. Wat. Air Soil Pollut. 99: 43–53.

    Google Scholar 

  • Englund, J.-O. & P. Jørgensen, 1973. A chemical classification system for argillaceous sediments and factors affecting their composition. Geologiska Föreningen i Stockholm Förhandlingar 95: 87–97.

    Google Scholar 

  • Engstrom, D. R. & S. R. Nelson, 1991. Paleolsalinity from trace metals in fossil ostracods compared with observational records at Devils Lake, North Dakota, USA. Palaeogeogr. Palaeoclim. Palaeoecol. 83: 295–312.

    Google Scholar 

  • Engstrom D. R. & E. B. Swain, 1986. The chemistry of lake sediments in time and space. Hydrobiologia 143: 37–44.

    CrossRef  Google Scholar 

  • Engstrom, D. R. & H. E. Wright Jr., 1984. Chemical stratigraphy of lake sediments as a record of environmental change. In Haworth, E. Y. & J. W. G. Lund (eds.) Lake Sediments and Environmental History. Leicester University Press, Leicester: 11–68.

    Google Scholar 

  • Engstrom, D. R., E. B. Swain, T. A. Henning, M. E. Brigham & P. L. Brezonik, 1994. Atmospheric mercury deposition to lakes and watersheds — a quantitative reconstruction from multiple sediment cores. Advances in Chemistry Series 237: 33–66.

    Google Scholar 

  • Evans, H. E., P. J. Dillon & L. A. Molot, 1997. The use of mass balance investigations in the study of the biogeochemical cycle of sulfur. Hydrological Processes 11: 765–782.

    CrossRef  Google Scholar 

  • Evans, H. E., P. J. Smith & P. J. Dillon, 1983. Anthropogenic zinc and cadmium burdens in sediments of selected southern Ontario lakes. Can J. Fish. Aquat. Sci. 40: 570–579.

    Google Scholar 

  • Farmer, J. G., 1994. Environmental change and the chemical record in Loch Lomond sediments. Hydrobiologia 290: 39–49.

    CrossRef  Google Scholar 

  • Farmer, J. G. & M. A. Lovell, 1986. Natural enrichment of arsenic in Loch Lomond sediments. Geoch. Cosmoch. Acta 50: 2059–2067.

    CrossRef  Google Scholar 

  • Fedorowich, J. S., J. P. Richards, J. C. Jain, R. Kerrich & J. Fan, 1993. A rapid method for REE and trace-element analysis using laser sampling ICP on direct fusion whole-rock glasses. Chem. Geol. 106: 229–249.

    CrossRef  Google Scholar 

  • Ferdelman, T. G., T. M. Church & G. W. Luther, 1991. Sulfur enrichment of humic substances in a Delaware salt marsh sediment core. Geoch. Cosmoch. Acta 55: 979–988.

    CrossRef  Google Scholar 

  • Ferriera, J. R., A. J. Lawlor, J. M. Bates, K. J. Clarke & E. Tipping, 1997. Chemistry of riverine and estuarine suspended particles from the Ouse-Trent system, UK. Colloids and Surfaces A: Physicochemical and Engineering Aspects 120: 183–198.

    Google Scholar 

  • Fiedler, H. D., R. Rubio, G. Rauret & I. Casals, 1999. Acid volatile sulfide determination in sediment using elemental analyzer with thermal conductivity detector. Talanta 48: 403–407.

    CrossRef  Google Scholar 

  • Findlay, A. D., D. W. Thompson & E. Tipping, 1996. Electrokinetic properties of oxide particles in natural waters. Colloids and Surfaces A: Physicochemical and Engineering Aspects 111: 203–212.

    CrossRef  Google Scholar 

  • Fitton, J. G., D. E. James & M. F. Thirwall, 1984. A User’s Guide to the X-Ray Fluorescence Analysis of Rock Samples. Internal report, Grant Institute of Geology, Edinburgh University.

    Google Scholar 

  • Fitzgerald, W. F., D. R. Engstrom, R. P. Mason & E. A. Nater, 1998. The case for atmospheric mercury contamination in remote areas. Envir. Sci. Technol. 32: 1–7.

    Google Scholar 

  • Flower, R. J., A. W. Mackay, N. L. Rose, J. F. Boyle, J. A. Dearing, P. G. Appleby, A. E. Kuzmina & L. Z. Granina, 1995. Sedimentary records of recent environmental change in Lake Baikal, Siberia. The Holocene 5: 323–327.

    Google Scholar 

  • Fortin, D., G. G. Leppard & A. Tessier, 1993. Characteristics of lacustrine diagenetic iron oxyhydroxides. Geoch. Cosmoch. Acta 57: 4391–4404.

    CrossRef  Google Scholar 

  • Förstner, U., 1976. Lake sediments as indicators of heavy metal pollution. Naturwissenschaften 63: 465–470.

    Google Scholar 

  • Förstner, U. & G. T. Wittmann, 1979. Metal Pollution in the Aquatic Environment. Springer, New York, 486 pp.

    Google Scholar 

  • Foster, I. D. L. & J. A. Lees, 1999. Changes in the physical and geochemical properties of suspended sediment delivered to the headwaters of LOIS river basins over the last 100 yrs: a preliminary analysis of lake and reservoir bottom sediments. Hydrological Processes 11: 1067–1086.

    Google Scholar 

  • Foster, I. D. L., S. M. Charlesworth & D. H. Keen, 1991. A comparative study of heavy metals and pollution in four reservoirs in the English Midlands. Hydrobiologia 214: 155–162.

    CrossRef  Google Scholar 

  • Gaillard, M.-J., J. A. Dearing, F. El-Daoushy, M. Enell & H. Håkansson, 1991. A multidisciplinary study of the lake Bjäresjösjön (S. Sweden): land-use history, soil erosion, lake trophy and lake-level fluctuations during the last 3000 years. Hydrobiologia 214: 107–114.

    CrossRef  Google Scholar 

  • Garrels, R. M. & F. T. MacKenzie, 1971. Evolution of Sedimentary Rocks. Norton & Company, New York, 397 pp.

    Google Scholar 

  • Gelinas, Y., M. Lucotte & J. P. Schmidt, 2000. History of the atmospheric deposition of major and trace elements in the industrialized St. Lawrence Valley, Quebec, Canada. Atmos. Envir. 34: 1797–1810.

    Google Scholar 

  • Golterman, H. L., 1995. Remarks on numerical and analytical methods to calculate diffusion in water/sediment systems. Hydrobiologia 315: 69–88.

    Google Scholar 

  • Golterman, H., J. Paing, L. Serrano & E. Gomez, 1998. Presence of and phosphate release from polyphosphates and phytate phosphate in lake sediments. Hydrobiologia 364: 99–104.

    Google Scholar 

  • Goodarzi, F. & D. J. Swaine, 1994. The influence of geological factors on the concentration of boron in Australian and Canadian coals. Chem. Geol. 118: 301–318.

    CrossRef  Google Scholar 

  • Håkanson, L., J. E. Brittain, L. Monte, R. Heling, U. Bergström & V. Suolanen, 1996. Modelling of radiocesium in lakes — the VAMP model. J. Envir. Radioactivity 33: 255–398.

    Google Scholar 

  • Hall, G. E. M., G. Gauthier, J.-C. Pelchat, P. Pelchat & J. E. Vaive, 1996. Application of a sequential extraction scheme to ten geological certified reference materials for the determination of 20 elements. J. Analyt. Atom. Spectr. 11: 787–796.

    Google Scholar 

  • Hall, R. I. & J. P. Smol, 1999. Diatoms as indicators of lake eutrophication. In Stoermer, E. F. & J. P. Smol (eds.) The Diatoms: Applications for the Environmental and Earth Sciences. Cambridge University Press, Cambridge: 128–168.

    Google Scholar 

  • Hamilton-Taylor, J., 1979. Enrichments of zinc, lead, and copper in recent sediments of Windermere, England. Env. Sci. Technol. 13: 693–698.

    Google Scholar 

  • Hamilton-Taylor, J. & W. Davison, 1995. Redox-driven cycling of trace elements in lakes. In Lerman, A., D. Imboden & J. Gat (eds.) Physics and Chemistry of Lakes. Springer-Verlag, Berlin, 334 pp.

    Google Scholar 

  • Hamilton-Taylor, J., W. Davison & K. Morfett, 1996. The biogeochemical cycling of Zn, Cu, Fe, Mn, and dissolved organic C in a seasonally anoxic lake. Limnol. Oceanogr. 41: 408–418.

    Google Scholar 

  • Hamilton-Taylor, J., L. Guisti, W. Davison, W. Tych & C. N. Hewitt, 1997. Sorption of trace metals (Cu, Pb, Zn) by suspended lake particles in artificial (0.005 M NaNo3) and natural (Esthwaite Water) freshwaters. Colloids and Surfaces A; Physicochemical and Engineering Aspects 120: 205–219.

    CrossRef  Google Scholar 

  • Hamilton-Taylor, J., & M. Willis, 1990. A quantitative assessment of the sources and general dynamics of trace metals in a soft-water lake. Limnol. Oceanogr. 35: 840–851.

    Google Scholar 

  • Hamilton-Taylor, J., M. Willis & C. S. Reynolds, 1984. Depositional fluxes of metals and phytoplankton in Windermere as measured by sediment traps. Limnol. Oceanogr. 29: 695–710.

    Google Scholar 

  • Harper, M. P., W. Davison, H. Zhang & W. Tych, 1998. Kinetics of metal exchange between solids and solutions in sediments and soils interpreted from DGT measured fluxes. Geoch. Cosmoch. Acta 62: 2757–2770.

    CrossRef  Google Scholar 

  • He, Q. & D. E. Walling, 1996. Use of fallout Pb-210 measurements to investigate longer-term rates and patterns of overbank sediment deposition on the floodplains of lowland rivers. Earth Surf. Process. Landforms 21: 141–154.

    CrossRef  Google Scholar 

  • He, Q., D. E. Walling & P. N. Owens, 1996. Interpreting the 137Cs profiles observed in several small lakes and reservoirs in Southern England. Chem. Geol. 129: 115–131.

    CrossRef  Google Scholar 

  • Heathwaite, A. L., 1994. Chemical fractionation of lake sediments to determine the effects of land-use change on nutrient loading. J. Hydrol. 159: 395–421.

    CrossRef  Google Scholar 

  • Hilton, J., W. Davison & U. Ochsenbein, 1985. A mathematical model for analysis of sediment core data: implications for enrichment factor calculations and trace-metal transport mechanisms. Chem. Geol. 48: 281–291.

    CrossRef  Google Scholar 

  • Hilton, J., E. Rigg, W. Davison, J. Hamilton-Taylor, M. Kelly & F. R. Livens, 1995. Modeling and interpreting element ratios in water and sediments: a sensitivity analysis of post-Chernobyl Ru: Cs ratios. Limnol. Oceanogr. 40: 1302–1309.

    Google Scholar 

  • Hornburg, V. & B. Luer, 1999. Vergleich zwischen total-und königswasserextrahierbaren elementgehalten in natürlichen böden und sedimenten. J. Plant Nutrition Soil Sci. 162: 131–137.

    Google Scholar 

  • Horowitz, A. J., K. A. Elrick, J. A. Robbins & R. B. Cook, 1995. The effects of mining and related activities on the sediment trace-element geochemistry of Lake Coeur D’Alene, Idaho, USA. 2: Subsurface sediments. Hydrological Processes 9: 35–54.

    Google Scholar 

  • Hsu, Y.-S., J. J. Walker & D. E. Ogren, 1986. A stepwise method for determining the number of component distributions in a mixture. Math. Geol. 18: 153–160.

    CrossRef  Google Scholar 

  • Huerta-Diaz, M. A., A. Tessier & R. Carignan, 1998. Geochemistry of trace metals associated with reduced sulfur in freshwater sediments. Applied Geochem. 13: 213–233.

    Google Scholar 

  • ten Hulscher, Th. E. M., G. A. J. Mol & F. Lüers, 1992. Release of metals from polluted sediments in a shallow lake: quantifying resuspension. Hydrobiologia 235/236: 97–105.

    CrossRef  Google Scholar 

  • Huttunen, P. & K. Tolonen, 1977. Human influence on the history of lake Lovojärvi, S. Finland, Suom. Mus. 1975: 68–105.

    Google Scholar 

  • Huttunen, P., J. Meriläinen & K. Tolonen, 1978. The history of a small dystrophied forest lake, southern Finland. Pol. Arch. Hydrobiol. 25: 189–202.

    Google Scholar 

  • Imboden, D. M., J. Tchopp & W. Stumm, 1980. Die Rekonstruktion früherer Stofffracten in einem See mittels Sedimentuntersuchungen. Schweiz. Z. Hydrol. 42: 1–14.

    Google Scholar 

  • Johnson, C. A., M. Ulrich, L. Sigg, D. M. Imboden, 1991. A mathematical model of the manganese cycle in a seasonally anoxic lake. Limnol. Oceanogr. 36: 1415–1426.

    Google Scholar 

  • Johansson, K., E. Bringmark, L. Lindevall & A. Wilander, 1995. Effects of acidification on the concentrations of heavy metals in running waters in Sweden. Wat. Air Soil Pollut. 85: 779–784.

    Google Scholar 

  • Jones, B. F. & C. J. Bowser, 1978. The mineralogy and related chemistry of lake sediments. In Lerman, A. (ed.) Lakes — Chemistry, Geology, Physics. Springer, New York, 363 pp.

    Google Scholar 

  • Jonsson, A. & M. Jansson, 1997. Sedimentation and mineralisation of organic carbon, nitrogen and phosphorus in a large humic lake northern Sweden. Arch. Hydrobiol. 141: 45–65.

    Google Scholar 

  • Kelts K. & K. J. Hsü, 1978. Freshwater carbonate sedimentation. In Lerman, A. (ed.) Lakes — Chemistry, Geology, Physics. Springer, New York, 363 pp.

    Google Scholar 

  • Kemp, A. L. W. & R. L. Thomas, 1976. Impact of man’s activities on the chemical composition of the sediments of Lakes Ontario, Erie and Huron. Wat. Air Soil Pollut. 5: 469–490.

    Google Scholar 

  • Klinkhammer, G., 1980. Early diagenesis in sediments from the eastern equatorial Pacific, II. Pore water metal results, Earth Planet Sci. Lett. 49: 81–101.

    CrossRef  Google Scholar 

  • Klinkhammer, G., D. T. Heggie & D. W. Graham, 1982. Metal diagenesis in oxic marine sediments. Earth Planet Sci. Lett. 61: 211–219.

    CrossRef  Google Scholar 

  • Klovan, J. E. & J. Imbrie, 1971. An algorithm and FORTRAN-IV program for large-scale factor analysis and calculation of factor scores. J. Math. Geol. 3: 61–77.

    CrossRef  Google Scholar 

  • Kowalewska, Z., E. Bulska & A. Hulanicki, 1998. The effect of sample preparation on metal determination in soil by FAAS. Fresnius. J. Analyt. Chem. 362: 125–129.

    Google Scholar 

  • Krauskopf, K. B., 1982. Introduction to Geochemistry. 2nd edition, McGraw-Hill, Singapore. 617 pp.

    Google Scholar 

  • Lange, J., 1970. Gcochemische Unteruchungen an Sedimenten des Persischen Golfes. Contr. Min. Petr. 28: 288–305.

    CrossRef  Google Scholar 

  • Ledin, A., S. Karlsson, A. Düker & B. Allard, 1995. Characterisation of the submicrometer phase in surface waters — a review. Analyst 120: 603–608.

    CrossRef  Google Scholar 

  • Lerman, A & R. R. Weiler, 1970. Diffusion and accumulation of chloride and sodium in Lake Ontario sediment. Earth Planet. Sci. Lett. 10: 150–156.

    CrossRef  Google Scholar 

  • Likens, G. E. & M. B. Davis, 1975. Post-glacial history of Mirror Lake and its watershed in New Hampshire, USA: an initial report. Verh. int. Ver. Limnol. 19: 982–993.

    Google Scholar 

  • Liu, J., R. E. Sturgeon, V. J. Boyko & S. N. Willie, 1996. Determination of chromium in marine sediment reference material BCSS-1. Fresnius J. Analyt. Chem. 356: 416–419.

    Google Scholar 

  • Lofts, S. & E. Tipping, 1998. An assemblage model for cation binding by natural particulate matter. Geoch. Cosmoch. Acta 62: 2609–2625.

    CrossRef  Google Scholar 

  • López-Sánchez, J. F., A. Sahuquillo, H. D. Fiedler, R. Rubio, G. Rauret, H. Muntau & P. Quevauviller, 1998. CRM 601, a stable material for its extractable content of heavy metals. Analyst 123: 1675–1677.

    Google Scholar 

  • Mach, C. E. & P. L. Brezonik, 1989. Trace metal research at Little Rock Lake, Wisconsin: background data, enclosure experiments, and the first three years of acidification. Sci. Total Envir. 87/88: 269–285.

    CrossRef  Google Scholar 

  • Mackereth, F. J. H., 1966. Some chemical observations on post-glacial lake sediments. Phil. Trans. R. Soc. Lond. B250: 165–213.

    Google Scholar 

  • Malo, B. A., 1977. Partial extractions of metals from aquatic sediments. Envir. Sci. Technol. 11: 277–282.

    Google Scholar 

  • Mas, F., J. M. Estella & V. Cerda, 1990. Determination of phosphate in water by flow injection analysis. Wat. Air Soil Pollut. 52: 359–368.

    Google Scholar 

  • Mathewes, R. W. & J. M. D’Auria, 1982. Historic changes in an urban watershed determined by pollen and geochemical analyses of lake sediment. Can J. Earth Sci. 19: 2114–2125.

    Google Scholar 

  • Matschullat, J. & M. Wyrobek, 1993. Controlled experimental acidification of lake sediments and resulting trace metal behaviour. Wat. Air Soil Pollut. 69: 393–403.

    Google Scholar 

  • McKee, J. D., T P. Wilson, D. T. Long & R. M. Owen, 1989. Pore-water profiles and early diagenesis of Mn, Cu and Pb in sediments from large lakes. J. Great Lakes Res. 15: 68–83.

    Google Scholar 

  • Mester, Z., C. Cresmisini, E. Ghiara & R. Morabito, 1998. Comparison of two sequential extraction procedures for metal fractionation in sediment samples. Analyt. Chim. Acta 359: 133–142.

    Google Scholar 

  • Miesch, A. T., 1981. Computer methods for geochemical and petrologic mixing problems. In Merriam, D. F. (ed.) Computer Applications in the Earth Sciences: an Update on the 70s. Plenum Press, New York and London: 243–265.

    Google Scholar 

  • Miller, E. K. & A. J. Friedland, 1994. Lead migration in forest soils: response to changing atmospheric inputs. Envir. Sci. Technol. 28: 662–669.

    Google Scholar 

  • Moalla, S. M. N., 1997. Physical fractionation of trace and rare earth elements in the sediments of Lake Nasser. Talanta 45: 213–221.

    CrossRef  Google Scholar 

  • de Montigny, C. & Y. T. Prairie, 1993. The relative importance of biological and chemical processes in the release of phosphorus from a highly organic sediment. Hydrobiologia 253: 141–150.

    CrossRef  Google Scholar 

  • Morfett, K., W. Davison & J. Hamilton-Taylor, 1988. Trace metal dynamics in a seasonally anoxic lake. Envir. Geol. Wat. Sci. 11: 107–114.

    Google Scholar 

  • Mortlock, R. A. & P. N. Froelich, 1989. A simple method for the rapid determination of biogenic opal in pelagic marine sediments. Deep-Sea Res. 30: 1415–1426.

    Google Scholar 

  • Mun, A. I. & Z. A. Bazilevich, 1962. Distribution of bromine in lacustrine bottom muds. Geochemistry 2: 199–205.

    Google Scholar 

  • Negi, B. S., V. Meenakshy & T. M. Krishnamoorthy, 1997. K 0 method of quantification in neutron activation analysis as applied to environmental samples. Envir. Monit. Assess. 47: 303–313.

    Google Scholar 

  • Norton, S. A., 1986. A review of the chemical record in lake sediment of energy related air pollution and its effects on lakes. Wat. Air Soil Pollut. 30: 331–345.

    Google Scholar 

  • Norton, S. A. & C. T. Hess, 1980. Atmospheric deposition in Norway during the last 300 years as recorded in SNSF lake sediments. I. Sediment dating and chemical stratigraphy. Proc. Int. Conf. Ecol. Impact Acid Precip. Norway 1980, SNSF Project.

    Google Scholar 

  • Norton, S. A. & J. S. Kahl, 1987. A comparison of lake sediments and ombrotrophic peat deposits as long term monitors of atmospheric pollution. New Approaches to Monitoring Aquatic Ecosystems, ASTM STP 940, T. P. Boyle, American Society for Testing and Materials, Philadelphia, 40–57.

    Google Scholar 

  • Norton, S. A. & J. S. Kahl, 1991. Progress in understanding the chemical stratigraphy of metals in lake sediments in relation to acidic deposition. Hydrobiologia 214: 77–84.

    CrossRef  Google Scholar 

  • Norton, S. A., R. W. Bienert, M. W. Binford & J. S. Kahl, 1992. Stratigraphy of total metals in PIRLA sediment cores. J. Paleolim. 7: 191–214.

    CrossRef  Google Scholar 

  • Nürnberg, G. K. & P. J. Dillon, 1993. Iron budgets in temperate lakes. Can. J. Fish. Aquat. Sci. 50: 1728–1737.

    Google Scholar 

  • Ochsenbein, U., W. Davison, J. Hilton & E. Y. Haworth, 1983. The geochemical record of major cations and trace metals in a productive lake — analysis of thinly sliced sediment samples characterised by diatom stratigraphy. Arch. Hydrobiol. 98: 463–488.

    Google Scholar 

  • Oluyedun, O. A., S. O. Ajayi & G. W. van Loon, 1991. Methods for fractionation of organic phosphorus in sediments. Sci. Total Envir. 106: 243–252.

    CrossRef  Google Scholar 

  • Pardo, P., J. F. López-Sánchez, G. Rauret, V. Ruban, H. Muntau & P. Quevauviller, 1999. Study of the stability of extractable phosphate content in a candidate reference material using a modified Williams extraction procedure. Analyst 124: 407–41.

    CrossRef  Google Scholar 

  • Peters, G. M., W. A. Maher, D. Jolley, B. I. Carroll, V. G. Gomez, A. V. Jenkinson & G. D. McOrist, 1999. Selenium contamination, resdistribution and remobilization in sediments of Lake Macquarie, NSW. Organic Geochem. 30: 1287–1300.

    Google Scholar 

  • Petersen, W., K. Wallmann, P. Li, F. Schroeder & H.-D. Knauth, 1995. Exchange of trace metals at the sediment-water interface during early diagenesis processes. Mar. Freshwater Res. 46: 19–26.

    Google Scholar 

  • Pizzaro, J., N. Belzile, M. Filella, G. G. Leppard, J. C. Negre, D. Perret & J. Buffle, 1995. Coagulation/sedimentation of submicron iron particles in a eutrophic lake. Water Res. 29: 617–632.

    Google Scholar 

  • Price, N. B., S. E. Calvert & P. G. W. Jones, 1970. The distribution of iodine and bromine in the sediments of the southwestern Barents Sea. J. Mar. Res. 28: 22–35.

    Google Scholar 

  • Punning, J.-M., J. F. Boyle, T. Alliksaar, R. Tann & M. Varvas, 1997. Human impact on the history of Lake Nômmejärv, NE Estonia: a geochemical and palaeobotanical study. The Holocene 7: 91–99.

    Google Scholar 

  • Quevauviller, P., 1998. Operationally defined extraction procedures for soil and sediment analysis. Trends in Analytical Chem. 17: 632–643.

    Google Scholar 

  • Quevauviller, P., G. U. Fortunati, M. Filippelli, F. Baldi, M. Bianchi & H. Muntau, 1996. Interlaboratory study to improve the quality control of methylmercury determination in sediment. Applied Organometallic Chem. 10: 537–544.

    Google Scholar 

  • Quevauviller, P., G. Rauret, J.-F. López-Sánchez, R. Rubio, A. Ure & H. Muntau, 1997. Certification of trace metal extractable contents in a sediment reference material (CRM 601) following a three-step sequential extraction procedure. Sci. Total Envir. 205: 223–234.

    Google Scholar 

  • Ragueneau, O. & P. Treguer, 1994. Determination of biogenic silica in coastal waters — applicability and limits of the alkaline digestion method. Mar. Chem. 45: 43–51.

    CrossRef  Google Scholar 

  • Raksasataya, M., A. G. Langdon & N. D. Kim, 1996. Assessment of the extent of lead redistribution during sequential extraction by two different methods. Analyt. Chim. Acta 332: 1–14.

    Google Scholar 

  • Renberg, I., 1976. Paleolimnological investigations in Lake Prästsjön. Early Norrland 9: 113–159.

    Google Scholar 

  • Renberg, I., 1985. Influence of acidification on the sediment chemistry of Lake Gårdsjön, SW Sweden. Ecol. Bull. 37: 246–250.

    Google Scholar 

  • Renberg, I., 1986. Concentration and annual accumulation values of heavy metals in lake sediments: their significance in studies of the history of heavy metal pollution. Hydrobiologia 143: 379–385.

    CrossRef  Google Scholar 

  • Reuter, R., R. F. Wright & U. Förstner, 1981. Distribution and chemical form of heavy metals in sediment cores from two Norwegian lakes affected by acid precipitation. In Heavy Metals in the Environment, CEP Consultants, Edinburgh: 318–321.

    Google Scholar 

  • Rippey, B., R. J. Murphy & S. W. Kyle, 1982. Anthropogenically derived changes in the sedimentary flux of Mg, Cr, Ni, Cu, Zn, Hg, Pb, and P in Lough Neagh, Northern Ireland. Envir. Sci. Technol. 16: 23–30.

    Google Scholar 

  • Rognerud, S. & E. Fjeld, 1993. Regional survey of heavy metals in lake sediments in Norway. Ambio 22: 206–212.

    Google Scholar 

  • Rowan, D. J., R. J. Cornett, K. King & B. Risto, 1995a. Sediment focusing and 210Pb dating: a new approach. J. Paleolim. 13: 107–118.

    CrossRef  Google Scholar 

  • Rowan, D. J., J. Kalff & J. B. Rasmussen, 1992. Profundal sediment organic content and physical character do not reflect lake trophic status, but rather reflect inorganic sedimentation and exposure. Can. J. Fish. Aquat. Sci. 49: 1431–1438.

    Google Scholar 

  • Rowan, D. J., J. B. Rasmussen & J. Kalff, 1995b. Optimal allocation of sampling effort in lake sediment studies. Can. J. Fish. Aquat. Sci. 52: 2146–2158.

    CrossRef  Google Scholar 

  • Sahuquillo, A., J. F. López-Sánchez, R. Rubio, G. Rauret, R. P. Thomas, C. M. Davidson & A. M. Ure, 1999. Use of a certified reference material for extractable trace metals to assess sources of uncertainty in the BCR three-stage sequential extraction procedure. Analyt. Chim. Acta 382: 317–327.

    Google Scholar 

  • Sakata, M., 1985. Diagenetic remobilisation of manganese, iron, copper and lead in anoxic sediment of a freshwater pond. Wat. Res. 19: 1033–1038.

    CrossRef  Google Scholar 

  • Santschi, P. H., 1984. Particle flux and trace metal residence time in natural waters. Limnol. Oceanogr. 29: 1100–1108.

    CrossRef  Google Scholar 

  • Santschi, P., U. P. Nyffeler, R. F. Anderson, S. L. Schiff, P. O’Hara & R. H. Hesslein, 1984. Response of radioactive trace metals to acid-base titrations in controlled experimental ecosystems: evaluation of transport parameters for application to whole lake radiotracer experiments. Can. J. Fish. Aquat. Sci. 43: 60–77.

    Google Scholar 

  • Saraswati, R., T. W. Vetter & R. L. Watters, 1995. Determination of arsenic, selenium and mercury in an estuarine sediment standard reference material using flow injection and atomic absorption spectrometry. Mikrochimica Acta 118: 163–175.

    CrossRef  Google Scholar 

  • Sasseville, D. R. & S. A. Norton, 1975. Present and historic geochemical relationships in four Maine lakes. Limnol. Oceanogr. 20: 699–714.

    Google Scholar 

  • Sasseville, D. R., S. A. Norton & R. B. Davis, 1975. Comparative interstitial water and sediment chemistry in oligotrophic and mesotrophic lakes, Maine, USA Verh. int. Ver. Limnol. 19: 367–371.

    Google Scholar 

  • Schaller, T., H. C. Moor & B. Wehrli, 1997. Sedimentary profiles of Fe, Mn, V, Cr, As and Mo as indicators of benthic redox conditions in Baldeggersee. Aquatic Sciences 59: 345–361.

    Google Scholar 

  • Schindler, P. W., 1975. The regulation of trace metal concentrations in natural water systems: a chemical approach. In: Proc. First Speciality Symp. Atmospheric Contribution to the Chemistry of Lake Water. Internat. Assoc. Great Lakes Res., 28 October 1975.

    Google Scholar 

  • Shapiro, J., W. T. Edmondson & D. E. Allison, 1971. Changes in the chemical composition of sediments of Lake Washington 1958–1971. Limnol. Oceanogr. 16: 437–452.

    Google Scholar 

  • Shaw, T. J., J. M. Gieskes & R. A. Jahnke, 1990. Early diagenesis in differing environments: the response of transition metals in pore water. Geoch. Cosmoch. Acta 54: 1233–1246.

    CrossRef  Google Scholar 

  • Sigg, L., M. Sturn & D. Kistler, 1987. Vertical transport of heavy metals by settling particles in Lake Zurich. Limnol. Oceanogr. 32: 112–130.

    Google Scholar 

  • Simola, H. & M. Lodenius, 1982. Recent increase in mercury sedimentation in a forest lake attributable to peatland drainage. Bull. Envir. Contam. Toxicol. 29: 298–305.

    CrossRef  Google Scholar 

  • Smodis̆, B., R. Jaćimović, G. Medin & S. Jovanić, 1993. Instrumental neutron activation analysis of sediment reference materials using the k0-standardization method. J. Radionalytical Nuclear Chem. 169: 177–185.

    Google Scholar 

  • Song Y. & G. Müller, 1995. Biogeochemical cycling of nutrients and trace metals in anoxic freshwater sediments of the Neckar River, Germany. Mar. Freshwater Res. 46: 237–243.

    Google Scholar 

  • Sprenger, M. & A. McIntosh, 1989. Relationship between concentrations of aluminum, cadmium, lead, and zinc in water, sediments and aquatic macrophytes. Arch. Envir. Contam. Toxicol. 18: 225–231.

    Google Scholar 

  • Stone, P., P. M. Green & T. M. Williams, 1997. Relationship of source and drainage geochemistry in the British paratectonic Caledonides — an exploratory regional assessment. Trans. Inst. Mining Metall. B-Applied Earth Science 106: B79–B84.

    Google Scholar 

  • Tessier, A., P. G. C. Campbell & M. Bisson, 1979. Sequential extraction procedure for the speciation of particulate trace metals. Analyt. Chem. 51: 844–851.

    Google Scholar 

  • Tessier, A., R. Carignan, B. Dubreuil & F. Rapin, 1989. Partitioning of zinc between the water column and the oxic sediments in lakes. Geoch. Cosmoch. Acta 53: 1511–1522.

    CrossRef  Google Scholar 

  • Tessier, A., Y. Couillard, P. G. C. Campbell & J. C. Auclair, 1993. Modeling Cd partitioning in oxic lake sediments and Cd concentrations in the freshwater bivalve Anodonta grandis. Limnol. Oceanogr. 38: 1–17.

    CrossRef  Google Scholar 

  • Tessier, A., D. Fortin, N. Belzile, R. R. DeVitre & G. G. Leppard, 1996. Metal sorption to diagenetic iron and manganese oxyhydroxides and associated organic matter: narrowing the gap between field and laboratory measurements. Geoch. Cosmoch. Acta 60: 387–404.

    CrossRef  Google Scholar 

  • Thomas, R. L., 1972. The distribution of mercury in the sediments of Lake Ontario. Can. J. Earth Sci. 9: 636–651.

    Google Scholar 

  • Tinsley, J., 1950. The determination of organic carbon in soils by dichromate mixtures. Trans. 4th Int. Congr. Soil Sci. 1: 161–164.

    Google Scholar 

  • Tipping, E., 1980. The adsorption of aquatic humic substances by iron oxides. Geoch. Cosmoch. Acta 45: 191–199.

    Google Scholar 

  • Tipping, E., 1994. WHAM a chemical equilibrium model and computer code for waters, sediments, and soils incorporating a discrete site/electrostatic model of ion binding by humic substances. Computers & Geosciences 20: 973–1023.

    CrossRef  Google Scholar 

  • Tipping, E., 1996. CHUM: a hydrochemical model for upland catchments. J. Hydrol. 174: 305–330.

    CrossRef  Google Scholar 

  • Tipping, E. & M. A. Hurley, 1992. A unifying model of cation binding by humic substances. Geoch. Cosmoch. Acta 56: 3627–3641.

    CrossRef  Google Scholar 

  • Tsai, L. J., K. C. Yu, J. S. Chang & S. T. Ho, 1998. Fractionation of heavy metals in sediment cores from the Ell-Ren River, Taiwan. Wat. Sci. Tech. 37: 217–224.

    Google Scholar 

  • Valero-Garcés, B. L., K. R. Laird, S. C. Fritz, K. Kelts, E. Ito & E. C. Grimm, 1997. Holocene climate in the Northern Great Plains inferred from sediment stratigraphy, stable isotopes, carbonate geochemistry, diatoms, and pollen at Moon Lake, North Dakota. Quat. Res. 48: 359–369.

    Google Scholar 

  • Verschuren, D., D. N. Edgington, H. J. Kling & T. C. Johnson, 1998. Silica depletion in Lake Victoria: sedimentary signals at offshore stations. J. Great Lakes Res. 24: 118–130.

    CrossRef  Google Scholar 

  • Verta, M., K. Tolonen & H. Simola, 1989. History of heavy-metal pollution in Finland as recorded by lake sediments. Sci. Total Envir. 87–88: 1–18.

    Google Scholar 

  • Wang, E. X. & G. Benoit, 1997. Fate and transport of contaminant lead in spodsols: a simple box model analysis. Wat. Air Soil Pollut. 95: 381–397.

    Google Scholar 

  • Wang, Z. J., H. El Ghobary, F. Giovanoli & P.-Y. Favarger, 1986. Interpretation of metal profiles in a sediment core from Lake Geneva: metal mobility or pollution. Schweiz. Z. Hydrol. 48: 1–17.

    Google Scholar 

  • Watt, J., 1998. Automated characterisation of individual carbonaceous fly-ash particles by computer controlled scanning electron microscopy: analytical methods and critical review of alternative methods. Wat. Air Soil Pollut. 105: 309–327.

    Google Scholar 

  • White, J. R. & C. T. Driscoll, 1987. Zn cycling in an acidic Adirondack lake. Envir. Sci.Technol. 21: 211–216.

    Google Scholar 

  • White, J. R. & C. P. Gubala, 1990. Sequentially extracted metals in Adirondack lake sediment cores. J. Paleolim. 3: 243–252.

    CrossRef  Google Scholar 

  • Williams, T. M., 1992. Diagenetic metal profiles in recent sediments of a Scottish freshwater loch. Envir. Geol. Wat. Sci. 20: 117–123.

    Google Scholar 

  • Williams, J. D. H., J. M. Jaquet & R. L.Thomas, 1976. Forms of phosphorus in the surficial sediments of Lake Erie. J. Fish. Res. Bd. Can. 33: 413–429.

    Google Scholar 

  • Wolfe, A. P. & J. W. Hartling, 1997. Early Holocene trace metal enrichment in organic lake sediments, Baffin Island, Arctic Canada. Arctic and Alpine Res. 29: 24–31.

    Google Scholar 

  • Xia, J., D. R. Engstrom & E. Ito, 1997. Geochemistry of ostracod calcite: part 2. The effects of water chemistry and seasonal temperature variation on Candona rawsoni. Geoch. Cosmoch. Acta 61: 383–391.

    Google Scholar 

  • Xue, H. B., R. Gächter & L. Sigg, 1997. Comparison of Cu and Zn cycling in eutrophic lakes with oxic and anoxic hypolimnion. Aquat. Sci. 59: 176–189.

    CrossRef  Google Scholar 

  • Yehl, P. M. & J. F. Tyson, 1997. Towards speciation of arsenic in a standard reference river sediment by high performance ion chromatography coupled with plasma-source mass spectrometry. Analyt. Communications 34: 49–51.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2002 Kluwer Academic Publishers

About this chapter

Cite this chapter

Boyle, J.F. (2002). Inorganic Geochemical Methods in Palaeolimnology. In: Last, W.M., Smol, J.P. (eds) Tracking Environmental Change Using Lake Sediments. Developments in Paleoenvironmental Research, vol 2. Springer, Dordrecht. https://doi.org/10.1007/0-306-47670-3_5

Download citation

  • DOI: https://doi.org/10.1007/0-306-47670-3_5

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-1-4020-0628-9

  • Online ISBN: 978-0-306-47670-9

  • eBook Packages: Springer Book Archive