Recognition and Analysis of Beddingand Sediment Fabric Features

  • Alan E. S. Kemp
  • Jean Dean
  • Richard B. Pearce
  • Jennifer Pike
Part of the Developments in Paleoenvironmental Research book series (DPER, volume 2)


laminated sediments scanning electron microscopy sediment fabric resin embedding 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Bennett, R. H., W. R. Bryant & G. H. Keller, 1981. Clay fabric of selected submarine sediments: Fundamental properties and models. J. Sed. Petrol. 51: 217–232.Google Scholar
  2. Blais-Stevens, A., J. J. Clague, P. T. Brobowsky & R. T. Patterson, 1997. Late Holocenc sedimentation in Saanich Inlet, British Columbia, and its paleoseismic implications. Can. J. Earth Sci. 34: 1345–1357.Google Scholar
  3. Bouma, A. G., 1969. Methods for the Study of Sedimentary Structures. Wiley, N.Y., 458pp.Google Scholar
  4. Brodie, I. & A. E. S. Kemp, 1985. Pelletal structures in Peruvian sediments upwelling sediments. J. Geol. Soc. Lond. 152: 141–150.Google Scholar
  5. Bull, D. & A. E. S. Kemp, 1995. Composition and origins of laminae in late Quaternary and Holocene sediments from Santa Barbara Basin. In Kennett, J. P., J. G. Baldauf & M. Lyle (eds.) Proc. ODP, Sci. Results 146 (Pt 2): College Station TX (Ocean Drilling Program): 77–87.Google Scholar
  6. Chmelick, F. B., 1967. Electro-osmotic core cutting. Mar. Geol. 5: 321–325.Google Scholar
  7. Crevello, P. D., J. M. Rine & D. E. Lanesky, 1981. A method for impregnating unconsolidated cores and slabs of calcareous and terrigenous muds. J. Sed. Petrol. 51: 658–660.Google Scholar
  8. Dean, J. M., A. E. S. Kemp, D. Bull, J. Pike, G. Petterson & B. Zolitschka, 1999. Taking varves to bits: Scanning electron microscopy in the study of laminated sediments and varves. J. Paleolim. 22: 121–136.CrossRefGoogle Scholar
  9. Gersonde, R., D. A. Hodell, P. Blum, et al., 1999. Proc. ODP, Init. Repts., 177 [CD-ROM]. Available from: Ocean Drilling Program, Texas A&M University, College Station, TX 77845-9547, USA.Google Scholar
  10. Goldstein J. I., D. E. Newbury, P. Echlin, D. C. Joy, C. E. Romig Jr., C. Lyman, C. Fiori & E. Lifshin, 1992. Scanning Electron Microscopy and X-ray Microanalysis. 2nd ed. Plenum, New York, 820p.Google Scholar
  11. Jim, C. Y., 1985. Impregnation of moist and dry unconsolidated clay samples using Spurr resin for microstructural studies. J. Sed. Petrol. 55: 597–599.Google Scholar
  12. Kenter, J. A. M., 1989. Applications of computerized tomography in sedimentology. Mar. Geotechnol. 8: 201–211.Google Scholar
  13. Krinsley, D. H., K. Pye & A. T. Kearsley, 1983. Application of backscattered electron microscopy in shale petrology. Geol. Mag. 120: 109–114.CrossRefGoogle Scholar
  14. Lamoureux, S. F., 1994. Embedding unfrozen lake sediments for thin section preparation. J. Paleolim. 10: 141–146.CrossRefGoogle Scholar
  15. Lamoureux, S., 2001. Varve chronology techniques. In Last, W. M. & J. P. Smol (eds.) Tracking Environmental Change Using Lake Sediments. Volume 1: Basin Analysis, Coring, and Chronological Techniques. Kluwer Academic Publishers, Dordrecht, The Netherlands: 247–260.Google Scholar
  16. Macquaker, J. H. S. & R. L. Gawthorpe, 1993. Mudstone lithofacies in the Kimmeridge Clay Formation, Wessex Basin, southern England: implications for the origin and controls of the distribution of mudstones. J. Sed. Petrol. 63: 1129–1143.Google Scholar
  17. Migeon, S. O. Weber, J.-C. Faugeres & J. Saint-Paul, 1999. SCOPIX: A new X-ray imaging system for core analysis. Geo-Marine Lett. 18: 251–255.Google Scholar
  18. Mix, A. C., W. Rugh, N. G. Pisias, S. Viers, T. Hagelberg, S. Hovan, A. E. S. Kemp, M. Leinen, M. Levitan & C. Ravelo, 1992. Color reflectance spectroscopy: a tool for the rapid characterization of deep-sea sediments. Proc. ODP, Init. Repts, 138. College Station, TX. (Ocean Drilling Program): 67–77.Google Scholar
  19. Nagao, S. & S. Nakashima, 1992. The factors controlling vertical colour variations of North Atlantic Madiera Abyssal Plain sediments. Mar. Geol. 109: 83–94.CrossRefGoogle Scholar
  20. Polysciences Inc., 1986. Spurr Low-viscosity Embedding Media. Polysciences data sheet 127.Google Scholar
  21. Pike, J. & A. E. S. Kemp, 1996 Preparation and analysis techniques for studies of laminated sediments. In Kemp, A. E. S. (ed.) Palaeoceanography and Palaeoclimatology from Laminated Sediments. Geol. Soc. Spec. Publ. 116: 37–48.Google Scholar
  22. Pike, J. & A. E. S. Kemp, 1997. Early Holocene decadal-scale ocean variability recorded in Gulf of California laminated sediments. Paleoceanog. 12: 227–238.Google Scholar
  23. Reynolds, S. & D. S. Gorsline, 1992. Clay microfabric of deep-sea, detrital mud(stone)s, California continental borderland. J. Sed. Petrol. 62: 41–53.Google Scholar
  24. Schaaf, M. & J. Thurow, 1994. A fast and easy method to derive highest-resolution time-series datasets from drillcores and rock samples. Sed. Geol. 94: 1–10.CrossRefGoogle Scholar
  25. Schaaf, M. & J. Thurow, 1998. Two 30,000 year, high resolution grey values time series from the Santa Barbara Basin and the Guaymas Basin. Geol. Soc. Spec. Publ. 131: 101–110.CrossRefGoogle Scholar
  26. Schimmelmann, A., C. B. Lange & W. H. Berger, 1990. Climatically controlled marker layers in Santa Barbara Basin sediments and fine-scale core-to-core correlation. Limnol. Oceanogr. 35: 165–173.CrossRefGoogle Scholar
  27. Spurr, A. R. 1969. A low-viscosity epoxy resin embedding medium for electron microscopy. J. Ultrastruct. Res. 26: 31–43.CrossRefGoogle Scholar

Copyright information

© Kluwer Academic Publishers 2002

Authors and Affiliations

  • Alan E. S. Kemp
    • 1
  • Jean Dean
    • 1
  • Richard B. Pearce
    • 1
  • Jennifer Pike
    • 2
  1. 1.School of Ocean and Earth ScienceUniversity of Southampton Southampton Oceanography CentreSouthamptonUK
  2. 2.Department of Earth SciencesCardiff UniversityCardiffUK

Personalised recommendations