Carbon and Oxygen Isotope Analysis of Lake Sediment Cellulose: Methods and Applications

  • Brent B. Wolfe
  • Thomas W. D. Edwards
  • Richard J. Elgood
  • Kristina R. M. Beuning
Part of the Developments in Paleoenvironmental Research book series (DPER, volume 2)

Keywords

cellulose lake sediment oxygen isotopes carbon isotopes paleohydrology paleoclimate 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abbott, M. B., B. B. Wolfe, R. Aravena, A. P. Wolfe & G. O. Seltzer, 2000. Holocene hydrological reconstructions from stable isotopes and paleolimnology, Cordillera Real, Bolivia. Quat. Sci. Rev. 19: 1801–1820.Google Scholar
  2. Aucour, A. M., C. Hillaire-Marcel & R. Bonnefille, 1993. A 30,000 year record of 13C and 18O changes in organic matter from an equatorial peatbog. In Swart, P. K., K. C. Lohmann, J. McKenzie & S. Savin (eds.) Climate Change in Continental Isotopic Records. Geophysical Monograph 78, American Geophysical Union, Washington: 343–351.Google Scholar
  3. Aucour, A. M., C. Hillaire-Marcel & R. Bonnefille, 1996. Oxygen isotopes in cellulose from modern and Quaternary intertropical peatbogs: implications for palaeohydrology. Chem. Geol. 129: 341–359.CrossRefGoogle Scholar
  4. Beuning, K. R. M. & W. T. Anderson, in review. Calibration of the cellulose-water oxygen isotope fractionation factor in aquatic algae and plants of tropical East Africa, in review.Google Scholar
  5. Beuning, K. R. M., K. Kelts, E. Ito & T. C. Johnson, 1997. Paleohydrology of Lake Victoria, East Africa, inferred from 18O/16O ratios in sediment cellulose. Geology 25: 1083–1086.CrossRefGoogle Scholar
  6. Boutton, T. W., 1991a. Stable carbon isotope ratios of natural materials: I. Sample preparation and mass spectrometric analysis. In Coleman, D. C. & B. Fry (eds.) Carbon Isotope Techniques. Elsevier, New York: 155–171.Google Scholar
  7. Boutton, T. W., 1991b. Stable carbon isotope ratios of natural materials: II. Atmospheric, terrestrial, marine, and freshwater environments. In Coleman, D. C. & B. Fry (eds.) Carbon Isotope Techniques. Elsevier, New York: 173–185.Google Scholar
  8. Boutton, T. W., W. W. Wong, D. L. Hachey, L. S. Lee, M. P. Cabrera & P. D. Klein, 1983. Comparison of quartz and pyrex tubes for combustion of organic samples for stable carbon isotope analysis. Analyt. Chem. 55: 1832–1833.Google Scholar
  9. Bryson, R. A. & W. M. Wendland, 1967. Tentative climatic patterns for some late-glacial and postglacial episodes in central North America. In Mayer-Oakes, W. J. (ed.) Life, Land and Water. University of Manitoba Press, Winnipeg: 271–298.Google Scholar
  10. Buhay, W. M., 1997. Inferring precipitation isotopic compositions from lake sediment organics and pore water: Workshop on water and climate studies in Canada using isotope tracers: Past, present, future. University of Waterloo, Waterloo.Google Scholar
  11. Buhay, W. M. & R. N. Betcher, 1998. Paleohydrologic implications of 18O enriched Lake Agassiz water. J. Paleolim. 19: 285–296.CrossRefGoogle Scholar
  12. Chapman, V. J., 1962. The Algae. Macmillan & Co., London, 472 pp.Google Scholar
  13. Cole, J. J., N. F. Caraco, G. W. Kling & T. K. Kratz, 1994. Carbon dioxide supersaturation in the surface waters of lakes. Science 265: 1568–1570.Google Scholar
  14. Craig, H., 1961. Isotopic variations in meteoric waters. Science 133: 1702–1703.Google Scholar
  15. Craig, H. & L. I. Gordon, 1965. Deuterium and oxygen-18 variations in the ocean and marine atmosphere. In Tongiorgi, E. (ed.) Stable Isotopes in Oceanographic Studies and Paleotemperatures. Cons. Naz. Rich. Lab. Geol. Nucl., Pisa: 9–130.Google Scholar
  16. Dansgaard, W., 1964. Stable isotopes in precipitation. Tellus 16: 436–468.CrossRefGoogle Scholar
  17. Dean, W. E., T. S. Ahlbrandt, R. Y. Anderson & J. P. Bradbury, 1996. Regional aridity in North America during the middle Holocene. The Holocene 6: 145–155.Google Scholar
  18. De Leeuw, J. W. & C. Largeau, 1993. A review of macromolecular organic compounds that comprise living organisms and their role in kerogen, coal, and petroleum formation. In Engel, M. H. & S. A. Macko (eds.) Organic Geochemistry: Principles and Applications. Plenum Press, New York: 23–72.Google Scholar
  19. DeNiro, M. J. & S. Epstein, 1981. Isotopic composition of cellulose from aquatic organisms. Geoch. Cosmoch. Acta. 45: 1885–1894.Google Scholar
  20. Duthie, H. C., J.-R. Yang, T. W. D. Edwards, B. B. Wolfe & B. G. Warner, 1996. Hamilton Harbour, Ontario: 8300 years of limnological and environmental change inferred from microfossil and isotopic analyses. J. Paleolim. 15: 79–97.CrossRefGoogle Scholar
  21. Edwards, T. W. D., 1993. Interpreting past climate from stable isotopes in continental organic matter. In Swart, P. K, K. C. Lohmann, J. McKenzie & S. Savin (eds.) Climate Change in Continental Isotopic Records. Geophysical Monograph 78, American Geophysical Union, Washington: 333–341.Google Scholar
  22. Edwards, T. W. D., R. O. Aravena, P. Fritz & A. V. Morgan, 1985. Interpreting paleoclimate from 18O and 2H in plant cellulose: comparison with evidence from fossil insects and relict permafrost in southwestern Ontario. Can. J. Earth Sci. 22: 1720–1726.Google Scholar
  23. Edwards, T. W. D., W. M. Buhay, R. J. Elgood & H. B. Jiang, 1994. An improved nickel-tube pyrolysis method for oxygen isotope analysis of organic matter and water. Chem. Geol. (Iso. Geosci. Sect.) 114: 179–183.Google Scholar
  24. Edwards, T. W. D., R. J. Elgood & B. B. Wolfe, 1997. Cellulose Extraction from Lake Sediments for 18O and 16O and 13C/12C Analysis. Technical Procedure 28.0, Environmental Isotope Laboratory, Department of Earth Sciences, University of Waterloo, 4 pp.Google Scholar
  25. Edwards, T. W. D. & P. Fritz, 1986. Assessing meteoric water composition and relative humidity from 18O and 2H in wood cellulose: Paleoclimatic implications for southern Ontario, Canada. Appl. Geochem. 1: 715–723.CrossRefGoogle Scholar
  26. Edwards, T. W. D. & P. Fritz, 1988. Stable-isotope paleoclimate records for southern Ontario. Canada: comparison of results from marl and wood. Can. J. Earth Sci. 25: 1397–1406.CrossRefGoogle Scholar
  27. Edwards, T. W. D. & J. H. McAndrews, 1989. Paleohydrology of a Canadian Shield lake inferred from 18O in sediment cellulose. Can. J. Earth Sci. 26: 1850–1859.Google Scholar
  28. Edwards, T. W. D., B. B. Wolfe & G. M. MacDonald, 1996. Influence of changing atmospheric circulation on precipitation γ18O-temperature relations in Canada during the Holocene. Quat. Res. 46: 211–218.CrossRefGoogle Scholar
  29. Elgood, R. J., B. B. Wolfe, W. M. Buhay & T. W. D. Edwards, 1997. γ18O in Organic Matter and Water by Nickel-tube Pyrolysis. Technical Procedure 29.0, Environmental Isotope Laboratory, Department of Earth Sciences, University of Waterloo, 8 pp.Google Scholar
  30. Epstein, S., P. Thompson & C. J. Yapp, 1977. Oxygen and hydrogen isotopic ratios in plant cellulose. Science 198: 1209–1215.Google Scholar
  31. Farquhar, G. D., B. K. Henry & J. M. Styles, 1997. A rapid on-line technique for determination of oxygen isotope composition of nitrogen-containing organic matter and water. Rapid Commun. Mass Spectrom. 11: 1554–1560.CrossRefGoogle Scholar
  32. Gibson, J. J., T. W. D. Edwards, G. G. Bursey & T. D. Prowse, 1993. Estimating evaporation using stable isotopes: Quantitative results and sensitivity analysis for two catchments in northern Canada. Nord. Hydrol. 24: 79–94.Google Scholar
  33. Gonfiantini, R., 1986. Environmental isotopes in lake studies. In Fritz, P. & J. C. Fontes (eds.) Handbook of Environmental Isotope Geochemistry, Volume 2, The Terrestrial Environment, B. Elsevier, Amsterdam: 113–168.Google Scholar
  34. Green, J. W., 1963. Wood cellulose. In Whistler, R. L. (ed.) Methods in Carbohydrate Chemistry, Vol. III. Academic Press, New York: 9–20.Google Scholar
  35. Harvey, F. E., S. K. Frape & R. J. Drimmie, 1997. Isotopic variations in Hamilton Harbour water as an indicator of Lake Ontario exchange flow. J. Great Lakes Res. 23: 169–176.Google Scholar
  36. Heemskerk, A. R. & P. Dieboldt, 1994. Breakseal Organic Combustion. Technical Procedure 22.0, Environmental Isotope Laboratory, Department of Earth Sciences, University of Waterloo, 11 pp.Google Scholar
  37. Herczeg, A. L. & R. G. Fairbanks, 1987. Anomalous carbon isotope fractionation between atmospheric CO2and dissolved inorganic carbon induced by intense photosynthesis. Geoch. Cosmo. Acta. 51: 895–899.Google Scholar
  38. Herczeg, A. L., 1988. Early diagenesis of organic matter in lake sediments: a stable carbon isotope study of pore waters. Chem. Geol. 72: 199–209.Google Scholar
  39. Kreger, D. R., 1962. Cell walls. In Lewin, R. A. (ed.) The Physiology and Biochemistry of Algae. Academic Press, New York: 315–335.Google Scholar
  40. Krishnamurthy, R. V., K. A. Syrup, M. Baskaran & A. Long, 1995. Late glacial climate record of midwestern United States from the hydrogen isotope ratio of lake organic matter. Nature 269: 1565–1567.Google Scholar
  41. Lee, C., J. A. McKenzie & M. Sturm, 1987. Carbon isotope fractionation and changes in the flux and composition of particulate matter resulting from biological activity during a sediment trap experiment in Lake Greifen, Switzerland. Limnol. Oceanogr. 32: 83–96.Google Scholar
  42. MacDonald, G. M., T. W. D. Edwards, K. A. Moser, R. Pienitz & J. P. Smol, 1993. Rapid response of treeline vegetation and lakes to past climate warming. Nature 361: 243–246.CrossRefGoogle Scholar
  43. McKenzie, J. A., 1985. Carbon isotopes and productivity in the lacustrine and marine environment. In Stumm, W. (ed.) Chemical Processes in Lakes. Wiley, Toronto: 99–118.Google Scholar
  44. Meyers, P. A., 1997. Organic geochemical proxies of paleoceanographic, paleolimnologic, and paleoclimatic records. Org. Geochem. 27: 213–250.CrossRefGoogle Scholar
  45. Meyers, P. A. & R. Ishiwatari, 1993. The early diagenesis of organic matter in lacustrine sediments. In Engel, M. H. & S. A. Macko (eds.) Organic Geochemistry: Principles and Applications. Plenum Press, New York: 185–209.Google Scholar
  46. Meyers, P. A. & E. Lallier-Vergès, 1999. Lacustrine sedimentary organic matter records of late Quaternary paleoclimates. J. Paleolim. 21: 345–372.CrossRefGoogle Scholar
  47. Motz, J.E., T. W. D. Edwards & W. M. Buhay, 1997. Use of nickel-tube pyrolysis for hydrogen-isotope analysis of water and other compounds. Chem. Geol. 140: 145–149.CrossRefGoogle Scholar
  48. Ott, E., H. M. Spurlin & M. W. Grafflin, 1954. Cellulose and Cellulose Derivatives. Part 1. Interscience, New York, 509 pp.Google Scholar
  49. Padden, M. C., 1996. Holocene Paleohydrology of the Palliser Triangle from Isotope Studies of Lake Sediments. M.Sc. Thesis, University of Waterloo, Waterloo, 108 pp.Google Scholar
  50. Padden, M., T. W. D. Edwards & R. Vance, 1996. Temperature dependent oxygen and carbon isotope fractionation between carbonate and cellulose in lake sediments: Symposium on isotopes in water resources management. International Atomic Energy Agency, Vienna, 20–24 March 1995: 241–244.Google Scholar
  51. Pienitz, R., J. P. Smol & G. M. MacDonald, 1999. Paleolimnologial reconstruction of Holocene climatic trends from two boreal treeline lakes. Northwest Territories, Canada. Arct. Ant. Alp. Res. 31: 82–93.Google Scholar
  52. Prescott, G. W., 1968. The Algae: A Review. Houghton Mifflin Co., Boston, 436 pp.Google Scholar
  53. Quay, P. D., S. R. Emerson, B. M. Quay & A. H. Devol, 1986. The carbon cycle for Luke Washington — a stable isotope study. Limnol. Oceanogr. 31: 596–611.CrossRefGoogle Scholar
  54. Rau, G., 1978. Carbon-13 depletion in a subalpine lake: Carbon flow implications. Science 201: 901–902.Google Scholar
  55. Rozanski, K., L. Araguás-Araguás & R.Gonfiantini, 1993. Isotopic patterns in global precipitation. In Swart, P. K., J. A. McKenzie & K. C. Lohmann (eds.) Continental Isotopic Indicators of Climate. Geophysical Monograph 78, American Geophysical Union, Washington: 1–36.Google Scholar
  56. Sauer, P. E., T. I. Eglinton, J. M. Hayes, A. Schimmelmann & A. L. Sessions, 2001a. Compound-specific D/H ratios of lipid biomarkers from sediments as a proxy for environmental and climatic conditions. Geoch. Cosmoch. Ada. 65: 213–222.Google Scholar
  57. Sauer, P. E., G. H. Miller & J. T. Overpeck, 2001b. Oxygen isotope ratios of organic matter in arctic lakes as a palcoclimate proxy: field and laboratory investigations. J. Paleolim. 25: 43–64.CrossRefGoogle Scholar
  58. Sauer, P. E. & L. D. S. L. O. Sternberg, 1994. Improved method for the determination of oxygen isotopic composition of cellulose. Analyt. Chem. 66: 2409–2411.Google Scholar
  59. Saurer. M., I. Robertson, R. Siegwolf & M. Leuenberger, 1998. Oxygen isotope analysis of cellulose: an interlaboratory comparison. Analyt. Chem. 70: 2074–2080.Google Scholar
  60. Sternberg, L. S. L., 1988. D/H ratios of environmental water recorded by D/H ratios of plant lipids. Nature 333: 59–61.Google Scholar
  61. Sternberg, L. S. L., 1989a. Oxygen and hydrogen isotope measurements in plant cellulose analysis. In Linskens, H. F. & J. F. Jackson (eds.) Plant Fibers. Springer-Verlag, New York: 89–99.Google Scholar
  62. Sternberg. L. S. L., 1989b. Oxygen and hydrogen isotope ratios in plant cellulose: Mechanisms and applications. In Rundel, P. W., J. R. Ehleringer & K. A. Nagy (eds.) Stable Isotopes in Ecological Research. Springer-Verlag, New York: 124–141.Google Scholar
  63. Sternberg. L. S. L. & M. J. DeNiro, 1983. Biogeochemical implications of the isotopic equilibrium fractionation factor between the oxygen atoms of acetone and water. Geoch. Cosmo. Acta. 47: 2271–2274.Google Scholar
  64. Sternberg, L., M. J. DeNiro & J. E. Keeley, 1984. Hydrogen, oxygen, and carbon isotope ratios of cellulose from submerged aquatic Crassulacean acid metabolism and non-Crassulacean acid metabolism plants. Pl. Physiol. 76: 68–70.Google Scholar
  65. Sternberg, L. S. L., M. J. DeNiro, M. E. Sloan & C. C. Black, 1986. Compensation point and isotopic characteristics of C3/C4 intermediates and hybrids in Panicum. Pl. Physiol. 80: 242–245.Google Scholar
  66. Street-Perrott, F. A., Y. Huang, R. A. Perrott, G. Eglinton, P. Barker, L. B. Khelifa, D. D. Harkness & D. O. Olago, 1997. Impact of lower atmospheric carbon dioxide on tropical mountain ecosystems. Science 278: 1422–1426.CrossRefGoogle Scholar
  67. Talbot, M. R. & T. Lærdal, 2000. The Late Pleistocene — Holocene palaeolimnology of Lake Victoria, East Africa, based upon elemental and isotopic analyses of sedimentary organic matter. J. Paleolim. 23: 141–164.CrossRefGoogle Scholar
  68. Talbot, M. R. & D. Livingstone, 1989. Hydrogen index and carbon isotopes of lacustrine organic matter as lake level indicators. Palaeogeog. Palaeoclim. Palaeoecol. 70: 121–137.Google Scholar
  69. Tsekos, I., 1999. The sites of cellulose synthesis in algae; diversity and evolution of cellulose-synthesizing enzyme complexes. J. Phycol. 35: 935–655.CrossRefGoogle Scholar
  70. Tyson, R. V., 1995. Sedimentary Organic Matter. Chapman & Hall, London, 615 pp. Wolfe, B. B., W. M. Buhay & A. Schwalb, 2000a. A varved lake sediment carbonate and organic isotope record of late Glacial — early Holocene paleohydrology and paleotemperature in the Northern Great Plains, USA. International Paleolimnology Symposium, Queen’s University, Kingston.Google Scholar
  71. Wolfe, B. B. & T. W. D. Edwards, 1997. Hydrologic control on the oxygen-isotope relation between sediment cellulose and lake water, western Taimyr Peninsula, Russia: Implications for the use of surface-sediment calibrations in paleolimnology. J. Paleolim. 18: 183–191.Google Scholar
  72. Wolfe, B. B. & T. W. D. Edwards, 1998. Comment on “Stable carbon and oxygen isotope records from Lake Erie sediment cores: Mollusc aragonite 4600 BP-200 BP” (JGLR 23: 307–316). J. Great Lakes Res. 24: 736–738.Google Scholar
  73. Wolfe, B. B., T. W. D. Edwards & R. Aravena, 1999. Changes in carbon and nitrogen cycling regimes during tree-line retreat recorded in the isotopic content of lacustrine organic matter, western Taimyr Peninsula, Russia. The Holocene 9: 215–222.CrossRefGoogle Scholar
  74. Wolfe, B. B., T. W. D. Edwards, R. Aravena, S. L. Forman, B. G. Warner, A. A. Velichko & G. M. MacDonald, 2000b. Holocene paleohydrology and paleoclimate at treeline, north-central Russia, inferred from oxygen isotope records in lake sediment cellulose. Quat. Res. 53: 319–329.CrossRefGoogle Scholar
  75. Wolfe, B. B., T. W. D. Edwards, R. Aravena & G. M. MacDonald, 1996. Rapid Holocene hydrologic change along boreal treeline revealed by γ13C and γ18O in organic lake sediments, Northwest Territories, Canada. J. Paleolim. 15: 171–181.Google Scholar
  76. Wolfe, B. B., T. W. D. Edwards & H. C. Duthie, 2000c. A 6000-year record of interaction between Hamilton Harbour and Lake Ontario: Quantitative assessment of recent hydrologic disturbance using 13C in lake sediment cellulose. Aquat. Eco. Sys. Health Manage. 3: 47–54.Google Scholar
  77. Yakir, D., 1992. Variations in the natural abundance of oxygen-18 and deuterium in plant carbohydrates. P1. Cell Environ. 15: 1005–1020.Google Scholar
  78. Yakir, D. & M. J. DeNiro, 1990. Oxygen and hydrogen isotope fractionation during cellulose metabolism in Lemna gibba L. P1. Physiol. 93: 325–332.Google Scholar
  79. Yapp, C. J. & S. Epstein, 1982. A reexamination of cellulose carbon-bound hydrogen γD measurements and some factors affecting plant-water D/H relationships. Geoch. Cosmoch. Acta. 46: 955–965.CrossRefGoogle Scholar

Copyright information

© Kluwer Academic Publishers 2002

Authors and Affiliations

  • Brent B. Wolfe
    • 1
  • Thomas W. D. Edwards
    • 1
  • Richard J. Elgood
    • 1
  • Kristina R. M. Beuning
    • 2
  1. 1.Department of Earth SciencesUniversity of WaterlooWaterlooCanada
  2. 2.Department of BiologyUniversity of Wisconsin - Eau ClaireEau ClaireUSA

Personalised recommendations