Application Of Stable Isotope Techniquesto Inorganic And Biogenic Carbonates

Part of the Developments in Paleoenvironmental Research book series (DPER, volume 2)


lake water sediment stable isotope trace element paleoenvironmental reconstruction carbonates ostracode Phacotus Chara 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Barrera, E., M. J. S. Tevesz, J. G. Carter & P. L. McCall, 1994. Oxygen and carbon isotopic composition and shell microstructure of the bivalve Laternula-elliptica from Antarctica. Palaios 9: 275–287.Google Scholar
  2. Chivas, A. R., P. De Deckker & J. M. G. Shelley, 1983. Magnesium, strontium, and barium partitioning in nonmarine ostracode shells and their use in paleoenvironmental reconstructions — a preliminary study. In Maddocks, R. F. (ed.) Applications of Ostracoda. University of Houston, Geosciences Department, Houston: 238–249.Google Scholar
  3. Cole, J. J.. N. F. Caraco, G. W. Kling & T. K. Kratz, 1994. Carbon dioxide supersaturation in the surface waters of lakes. Science 265: 1568–1570.Google Scholar
  4. Colman, S. M., R. M. Forester, R. L. Reynolds, D. S. Sweetkind, J. W. Kling, P. Gangemi, G. A. Jones, L. D. Keigwin & D. S. Foster, 1994. Lake-level history of Lake Michigan for the past 12,000 Years: The record from deep lacustrine sediments. J. Great Lakes Res. 20: 73–92.Google Scholar
  5. Craig, H., 1965. The measurement of oxygen isotope peleotemperatures. In Tongiorgi, E. (ed.) Stable Isotopes in Oceanographic Studies and Paleotemperatures, Spoleto 1965. Conoglio Nazionale delle Ricerche, Pisa: 161–182.Google Scholar
  6. Craig, H. & L. Gordon, 1965. Deuterium and oxygen-18 isotope variations in the ocean and marine atmosphere. In Tongiorgi, E. (ed.) Stable Isotopes in Oceanographic Studies and Paleotemperatures, Spoleto 1965. Conoglio Nazionale delle Ricerche, Pisa, Italy: 9–130.Google Scholar
  7. Dansgaard, W., H. B. Clausen, N. Gundestrup, C. U. Hammer, S. F. Johnsen, P. M. Kristinsdottir & N. Reeh,1982. A new Greenland deep ice core. Science 218: 1273–1277.Google Scholar
  8. Dean, W. E., 1999. The carbon cycle and biogeochemical dynamics in lake sediments. J. Paleolim. 21: 375–393.CrossRefGoogle Scholar
  9. Delorme, L. D., 1970a. Freshwater ostarcodes of Canada.Part II.Subfamily Cypridopsinae and Herpetocypridinae, and family Cyclocypridinae. Can. J. Zool. 48: 253–266.Google Scholar
  10. Delorme. L. D., 1970b. Freshwater ostracodes of Canada. Part I. Subfamily Cypridinae. Can. J. Zool. 48: 153–168.Google Scholar
  11. Delorme, L. D., 1970c. Freshwater ostracodes of Canada. Part III. Family Candonidae. Can. J. Zool. 48: 1099–1127.Google Scholar
  12. Delorme, L. D., 1970d. Freshwater ostracodes of Canada. Part IV. Families Ilyocyprididae, Notodromadidae, Darwinulidae,Cytherideidae, and Entocytheridae. Can. J. Zool. 48: 1251–1259.Google Scholar
  13. Delorme, L. D., 1971. Freshwater ostracodes of Canada. Part V.Families Limnocytheridae, Loxoconchidae. Can. J. Zool. 49: 43–64.CrossRefGoogle Scholar
  14. Dettman, D. L., A. K. Reische & K. C. Lohmann, 1999. Controls on the stable isotope composition of seasonal growth bands in aragonitic fresh-water bivalves (unionidae). Geochim. Cosmochim. Acta 63: 1049–1057.CrossRefGoogle Scholar
  15. Dettman, D. L., A. J. Smith, D. K. Rea, T. C. Moore & K. C. Lohmann, 1995. Glacial meltwater in Lake Huron during early postglacial time as inferred from single-valve analysis of oxygen isotopes in ostracodes. Quat. Res. 43: 297–310.CrossRefGoogle Scholar
  16. Dunlap, J. R. & P. L. Walne, 1993. Microarchitecture and mineralization in loricae of phacotacean flagellates. Acta Protozoologica 32: 237–243.Google Scholar
  17. Durazzi, J. T., 1977. Stable isotopes in the ostracod shell: a preliminary study. Geochim. Cosmochim. Acta 41: 1168–1170.CrossRefGoogle Scholar
  18. Emiliani, C., 1955. Pleistocene temperatures. J. Geol. 63: 538–578.CrossRefGoogle Scholar
  19. Epstein, S., R. Buchsbaum, H. A. Lowenstam & H. C. Urey, 1951. Carbonate-water isotopic temperature scale. Geol. Soc. Amer. Bull. 63: 417–426.Google Scholar
  20. Epstein, S., R. Buchsbaum, H. A. Lowenstam & H. C. Urey, 1953. Revised carbonate-water isotopic temperature scale. Geol. Soc. Amer. Bull. 64: 1315.Google Scholar
  21. Eugster, H. P. & B. F. Jones, 1979. Behavior of major solutes during closed-basin brine evolution. Amer. J. Sci. 279: 609-631.Google Scholar
  22. Findlay, D. L., H. J. Kling, H. Römick & W. J. Findlay, 1998. A paleolimnological study of eutrophied Lake Arendsee (Germany). J. Paleolim. 19: 41–54.CrossRefGoogle Scholar
  23. Forester, R. M., P. A. Sandberg & T. F. Anderson, 1971. Isotopic variability of cheilostome bryozoan skeletons. In Larwood, G. P. (ed.) Living and Fossil Bryozoa. Academic Press, New York: 79–94.Google Scholar
  24. Fritz, P., T. W. Anderson & C. F. M. Lewis, 1975. Late Quaternary climatic trends and history of Lake Erie from stable isotope studies. Science 190: 267–269.Google Scholar
  25. Fritz, P. & S. Poplawski, 1974. 18O and 13C in the shells of freshwater molluscs and their environments. Earth Planet. Sci. Lett. 24: 91–98.CrossRefGoogle Scholar
  26. Gaffey, S. J. & C. E. Bronnimann, 1993. Effects of bleaching on organic and mineral phases in biogenic carbonates. J. Sed. Petrol. 63: 752–754.Google Scholar
  27. Gaffey, S. J., J. J. Kolak & C. E. Bronnimann, 1991. Effects of drying, heating, annealing, and roasting on carbonate skeletal material, with geochemical and diagenetic implications. Geochim. Cosmochim. Acta 55: 1627–1640.CrossRefGoogle Scholar
  28. Gat, J. R., 1995. Stable isotopes of fresh and saline lakes. In Lerman, A., D. Imboden & J. R. Gat (eds.) Physics and Chemistry of Lakes. Springer-Verlag, Berlin: 139–165.Google Scholar
  29. Gonfiantini, R., 1986. Environmental isotopes in lake studies. In Fritz, P. & J.C. Fontes (eds.) Handbook of Environmental Isotope Geochemistry, 2. Terrestrial Environment, B. Elsevier, Amsterdam: 113–168.Google Scholar
  30. Grossman, E. L. & T.-L. Ku, 1986. Oxygen and carbon isotope fractionation in biogenic aragonite: temperature effects. Chem. Geol. (Isot. Geosci. Sect.) 59: 59–74.Google Scholar
  31. Haskell, B. J., D. R. Engstrom & S. C. Fritz, 1996. Late Quaternary paleohydrology in the North American Great Plains interred from the geochemistry of endogenic carbonate and fossil ostracodes from Devils Lake, North Dakota, USA. Palaeogeogr., Palaeoclimatol., Palaeoecol. 124: 179–193.CrossRefGoogle Scholar
  32. Hepperle, D. & L. Krienitz, 1996. The extracellular calcification of zoospores of Phacotus lenticularis (Chlorophyta, Chlamydomonadales). European J. Phycology 31: 11–21.Google Scholar
  33. Hepperle, D. & L. Krienitz, 1997. Phacotus lenticularis (Chlamydomonadales, Phacotaceae) zoospores require external supersaturation of calcium carbonate for calcification in culture. J. Phycology 33: 415–424.CrossRefGoogle Scholar
  34. Horibe, Y. & T. Oba, 1972. Temperature scales of aragonite-water and calcite-water systems (in Japanese). Fossils 23/24: 69–79.Google Scholar
  35. Hostetler, S. W., 1995. Hydrological and thermal response of lakes to climate: description and modeling. In Lerman, A., D. M. Imboden & J. R. Gat (eds.) Physics and Chemistry of Lakes. Springer-Verlag, Berlin: 63–82.Google Scholar
  36. Hostetler, S. W. & L. V. Benson, 1994. Stable isotopes of oxygen and hydrogen in the Truckee River-Pyramid Lake surface-water system. 2. A predictive model of δ18O and δ2Hin Pyramid Lake. Limnol. Oceanogr. 39: 356–364.Google Scholar
  37. Hull, H. & A. G. Turnbull, 1973. A thermalchecmial study of monohydrocalcite. Geochim. Cosmochim. Acta 37: 685–694.CrossRefGoogle Scholar
  38. Ito, E., Z. Yu, D. R. Engstrom & S. C. Fritz, 1998. Is paleoclimatic interpretation of oxygen-isotope records from glaciated Great Plains possible? American Quaternary Association Program & Abstracts of the 15th Biennial Meeting 119.Google Scholar
  39. Jouzel, J., C. Lorius, J. R. Petit, C. Genthon, N.I. Barkov, V. M. Kotlyakov & V. M. Petrov, 1987. Vostok ice core: a continuous isotope temperature record over the last climatic cycle (160,000 years). Nature 329: 403–408.CrossRefGoogle Scholar
  40. Keatings, K. W., E. Ito, D. R. Engstrom, Z. C. Yu, T. H. E. Heaton & B. J. Haskell, 1999. An investigation into the effect on ostracod shell chemistry of some chemical and physical cleaning techniques. EOS, Supplement 80: S 176.Google Scholar
  41. Koschel, R., G. Proft & H. Raidt, 1987. Phacotus Massenentwicklungen eine Quelle des authochthonen Kalkeintrages in Seen. Limnologica 18: 457–160.Google Scholar
  42. LaBaugh, J. W. & G. A. Swanson, 1992. Changes in the chemical characteristics of water in selected wetlands in the Cottonwood Lake area, North Dakota, USA, 1967–1989. In Robarts, R. D. & M. L. Bothwell (eds.) Aquatic Ecosystems in Semi-Arid Regions: Implications for Resource Management. Environment Canada, Saskatoon, Saskatchewan.: 149-162.Google Scholar
  43. Lagerheim, G., 1902. Untersuchungen über fossile Algen, I & II. Geol. För. Stockh. Förh. 24:475–500.Google Scholar
  44. Last.W. M., 1982. Holocene carbonate sedimentation in Lake Manitoba. Sedimentology 29: 691–704.Google Scholar
  45. Love, K. M. & A. Woronow, 1991. Chemical changes induced in aragonite using treatments for destruction of organic material. Chem. Geol. 93: 291–301.CrossRefGoogle Scholar
  46. McConnaughey, T., 1991. Calcification in Chara corallina: CO2 hydroxylation generates protons for bicarbonate assimilation. Limnol. Oceanogr. 36: 619–628.CrossRefGoogle Scholar
  47. McConnaughey, T. A. & R. F. Falk, 1991. Calcium-proton exchange during algal calcification. Biol. Bull. 180: 185–195.Google Scholar
  48. McCrea, J. M., 1950. On the isotopic chemistry of carbonates and a paleotemperature scale. J. Chem. Physics 18: 849–857.CrossRefGoogle Scholar
  49. Müller, G., G. Irion & U. Förstner, 1972. Formation and diagenesis of inorganic CaMg carbonates in the lacustrine environment. Naturwissenschaften 59: 158–164.Google Scholar
  50. Naef, J. & P. Martin, 1987. Plancton du lac Léman (XI) année 1985. Archives des Sciences (Geneva) 40: 23–46.Google Scholar
  51. Rosenbaum, J. & S. M. F. Sheppard, 1986. An isotopic study of siderites, dolomites and ankerites at high temperatures. Geochim. Cosmochim. Acta 50: 1147–1150.CrossRefGoogle Scholar
  52. Rozanski, K., L. Araguas-araguas & R. Gonfiantini, 1993. Isotopic Patterns in Modern Global Precipitation. In Swart, P. K., K. C. Lohmann, J. Mckenzie & S. Savin (eds.) Climate Change in Continental Isotopic Records. American Geophysical Union: 1–36.Google Scholar
  53. Schlegel, I., R. Koschel & L. Krienitz, 1998. On the occurrence of Phacotus lenticularis (Chlorophyta) in lakes of different trophic state. Hydrobiologia 353: 369–370.Google Scholar
  54. Siegenthaler, U. & U. Eicher, 1986. Stable oxygen and carbon isotope analyses. In Berglund, B. E. (ed.) Handbook of Holocene Palaeoecology and Palaeohydrology. J. Wiley, New York: 407–422.Google Scholar
  55. Smith, A. J., J. Donovan, E. Ito & D. R. Engstrom, 1997. Groundwater processes controlling prairie lake response to mid-Holocene drought. Geology 25: 391–394.CrossRefGoogle Scholar
  56. Spencer, R. J., 1977. Silicate and Carbonate Sediment-water Relationships in Walker Lake, Nevada. M.S. thesis. University of Nevada.Google Scholar
  57. Stuiver, M., 1968. Oxygen-18 content of atmospheric precipitation during last 11,000 years in the Great Lakes region. Science 162: 994–997.Google Scholar
  58. Stuiver, M., 1970. Oxygen and carbon isotope ratios of fresh-water carbonates as climatic indicators. J. Geophys. Res. 75: 5247–5257.Google Scholar
  59. Swart, P. K., S. J. Burns & J. J. Leder, 1991. Fractionation of the stable isotopes of oxygen and carbon in carbon dioxide during the reaction of calcite with phosphoric acid as a function of temperature and technique. Chem. Geol. (Isot. Gcosci. Sect.) 86: 89–96.Google Scholar
  60. Tarutani, T., R. N. Clayton & T. Mayeda, 1969. The effect of polymorphism and magensium substitution on oxygen isotope fractionation between calcium carbonate and water. Geochim. Cosmochim. Acta 33: 987–996.CrossRefGoogle Scholar
  61. Urey, H. C., 1947. The thermodynamic properties of isotopic substances. J. Chem. Soc. (Lond): 562–581.Google Scholar
  62. van Morkhoven, F. P. C. M., 1962. Post-Palaeozoic Ostracoda, Their Morphology, Taxonomy, and Economic Use. Elsevier, Amsterdam, 204 pp.Google Scholar
  63. Veizer, J., 1983. Trace elements and isotopes in sedimentary carbonates. In Reeder, R. J. (ed.) Carbonates: Mineralogy and Chemistry. Mineralogical Society of America, Washington, D. C.: 265–300.Google Scholar
  64. von Grafenstein, U., H. Erlenkeuser, J. Müller & A. Kleinmann-Eisenmann,1992. Oxygen isotope records of benthic ostracods in Bavarian lake sediments. Naturwissenschaften 79: 145–152.CrossRefGoogle Scholar
  65. von Grafenstein, U., H. Erlernkeuser & P. Trimborn, 1999. Oxygen and carbon isotopes in modern fresh-water ostracod valves: assessing vital offsets and autoecological effects of interest for paleoclimate studies. Palaeogeogr., Palaeoclimatol., Palaeoecol. 148: 133–152.Google Scholar
  66. Wachter, E. A. & J. M. Hayes, 1985. Exchange of oxygen isotopes in carbon-dioxide-phosphoric acid systems. Chem. Geol. (Isot. Geosci. Sect.) 52: 365–374.CrossRefGoogle Scholar
  67. Wansard, G., P. DC Deckker & R. Julià, 1998. Variability in ostracod partition coefficients D(Sr) and D(Mg): Implications for lacustrine palaeoenvironmental reconstructions. Chem. Geol. 146: 39–54.CrossRefGoogle Scholar
  68. Winter, T. C., 1995. Hydrological Processes and the Water Budget of Lakes. In Lerman, A., D. Imboden & J. Gat (eds.) Physics and Chemistry of Lakes. Springer-Verlag: 37–62.Google Scholar
  69. Xia, J., D. R. Engstrom & E. Ito, 1997a. Geochemistry of ostracode calcite: 2. the effects of water chemistry and seasonal temperature variation on Candona rawsoni. Geochim. Cosmochim. Acta 61: 383–391.Google Scholar
  70. Xia, J., B. J. Haskell, D. R. Engstrom & E. Ito, 1997b. Holocene climate reconstructed from tandem trace-element and stable-isotope composition of ostracodes from Coldwater Lake, North Dakota, USA. J. Paleolim. 17: 85–100.CrossRefGoogle Scholar
  71. Xia, J., E. Ito & D. R. Engstrom, 1997c. Geochemistry of ostracode calcite: 1. an experimental determination of oxygen isotope fractionation. Geochim. Cosmochim. Acta 61: 377–382.Google Scholar
  72. Yu, Z. & E. Ito, 1999. Possible solar forcing of century-scale drought frequency in the northern Great Plains. Geology 27: 263–266.CrossRefGoogle Scholar

Copyright information

© Kluwer Academic Publishers 2002

Authors and Affiliations

  • Emi Ito
    • 1
  1. 1.Department of Geology and Geophysics and Limnological Research CenterUniversity of MinnesotaSE MinneapolisUSA

Personalised recommendations