Near-Infrared Spectrometry (Nirs) in Palaeolimnology

  • Tom Korsman
  • Ingemar Renberg
  • Eigil DÅBakk
  • Mats B. Nilsson
Part of the Developments in Paleoenvironmental Research book series (DPER, volume 2)

Keywords

near-infrared spectrometry (NIRS) lake sediments calibration models palaeolimnological reconstruction optimal sample selection NIR theory spectral filters instrument design sample preparation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Albano, C., Å Albano, E. Bohlin, M. Häamäläinen, C. Röckner & T. Sundén, 1988. Néar infrared spectroscopy and peat characterization. Proc. VIII Intern. Peat Congress IV: 241–246.Google Scholar
  2. Balsam, W. L. & B. C. Deaton, 1996. Determining the composition of late Quaternary marine sediments from NUV, VIS, and NIR diffuse reflectance spectra. Marine Geol. 134: 31–55.Google Scholar
  3. Barnes, R. J., M. S. Dhanoa & S. J. Lister, 1989. Standard normal variate transformation and detrending of near-infrared diffuse reflectance spectra. Appl. Spectrosc. 43: 772–777.CrossRefGoogle Scholar
  4. Birks, H. J. B., 1998. D. G. Frey & E. S. Deevey review #1 — Numerical tools in palaeolimnology: progress, potentialities, and problems. J. Palcolim. 20: 307–332.Google Scholar
  5. Birks, H. J. B., S. Juggins, A. Lotter & J. P. Smol, in preparation. Tracking Environmental Change Using Lake Sediments: Data Handling and Statistical Techniques. Kluwer Academic Publishers, Dordrecht, The Netherlands.Google Scholar
  6. Bokobza, L., 1998. Near infrared spectroscopy. J. Near Infrared Spectrosc. 6: 3–17.Google Scholar
  7. Burger, T., J. Fricke & J. Kuhn, 1998. NIR radiative transfer investigations to characterise pharmaceutical powders and their mixtures. J. Near Infrared Spectrosc. 6: 33–40.Google Scholar
  8. Carlson, R., 1992. Design and Optimization in Organic Synthesis. Elsevier, Amsterdam.Google Scholar
  9. Davies, A. M. C., 1997. The continuing progress of NIR spectroscopy: highlights from NIR-97. Spectroscopy Europe 9: 16–18.Google Scholar
  10. Davies, A. M. C. & P. Williams (eds.), 1996. Near Infrared Spectroscopy: The Future Waves. NIR Publications, Chichester, xx pp.Google Scholar
  11. Day, M. S. & F. R. B. Fearn, 1982. Near infra-red reflectance as an analytical technique. Part 2. Design and development of practical NIR instruments. Laboratory Practice 31: 439–443.Google Scholar
  12. Dåbakk, E., 1999. Near Infrared Spectrometry: A Potential Tool for Environmental Monitoring of Aquatic Systems. PhD thesis. Umeå University, Sweden.Google Scholar
  13. Dåbakk, E., M. Nilsson, P. Geladi, S. Wold & I. Renberg, 1999. Sampling reproducibility and error estimation in near infrared calibration of lake sediments for water quality monitoring. J. Near Infrared Spectrosc. 7: 241–250.Google Scholar
  14. Dåbakk, E., M. Nilsson, P. Geladi, S. Wold & I. Renberg, 2000. Inferring lake water chemistry from filtered seston using NIR spectrometry. Water Research 34: 1666–1672.Google Scholar
  15. Foley, W. J., A. McIlwee, I. Lawler, L. Aragones, A. P. Woolnough & N. Berding, 1998. Ecological applications of near infrared reflectance spectroscopy: a tool for rapid, cost-effective prediction of the composition of plant and animal tissues and aspects of animal performance. Oecologia 116: 293–305.CrossRefGoogle Scholar
  16. Geladi, P. & E. Dåbakk, 1995. An overview of chemometrics applications in NIR spectroscopy. J. Near Infrared Spectrosc. 3: 119–132.Google Scholar
  17. Geladi, P., D. MacDougall & H. Martens, 1985. Linearization and scatter-correction for near-infrared reflectance spectra of meat. Appl. Spectrosc. 39: 491–500.CrossRefGoogle Scholar
  18. Herschel, W., 2000. Herschel’s paper [reprint]. J. Near Infrared Spectrosc. 8: 75–86.Google Scholar
  19. Jackson, J. E.,1991. A User’s Guide to Principal Components. John Wiley & Sons, New York, 569 pp.Google Scholar
  20. Johansson, E., J. Å. Persson & C. Albano, 1987. Determination of water content and calorific value of peat by n.i.r. spectroscopy. Fuel 58: 1173–1178.Google Scholar
  21. Korsman, T., M. Nilsson, J. Öhman & I. Renberg, 1992. Near-infrared reflectance spectroscopy of sediments: a potential method to infer the past pH of lakes. Environ. Sci. Technol. 26: 2122–2126.CrossRefGoogle Scholar
  22. Korsman, T., M. B. Nilsson, K. Landgren & I. Renberg, 1999. Spatial variability in surface sediment composition characterised by near-infrared (NIR) reflectance spectroscopy. J. Paleolim. 21:61–71.CrossRefGoogle Scholar
  23. Laaksonen, K., 1976. The dependence of mean air temperatures upon latitude and altitude in Fennoscandia (1921–1950). Ann. Acad. Sci. Fennicae 119: 5–19.Google Scholar
  24. Kubelka, P. & F. Munk, 1931. Ein Beitrag zur Optik der Farbanstriche. Zeithschrift für Technische Physik 12: 593–604.Google Scholar
  25. Malley, D. F., 1998. Near-infrared spectroscopy as a potential method for routine sediment analysis to improve rapidity and efficiency. Water Sci & Technol. 37: 181–188.Google Scholar
  26. Malley, D. F., P. C. Williams, M. P. Stainton & B. W. Hauser, 1993. Application of near-infrared reflectance spectroscopy in the measurement of carbon, nitrogen, and phosphorus in seston from oligotrophic lakes. Can. J. Fish. Aquat. Sci. 50: 1779–1785.CrossRefGoogle Scholar
  27. Malley, D. F. & M. Nilsson, 1995. Environmental applications of near infrared spectroscopy: seeing the environment in a different light. Spectroscopy Europe 7: 8–16.Google Scholar
  28. Malley, D. F, P. C. Williams & M. P. Stainton, 1996. Rapid measurement of suspended C, N, and P from Precambrian shield lakes using near-infrared reflectance spectroscopy. Water Research. 30:1325–1332.CrossRefGoogle Scholar
  29. Malley, D. F. & P. C. Williams, 1997. Use of near-infrared reflectance spectroscopy in prediction of heavy metals in freshwater sediment by their association with organic matter. Environ. Sci. Technol. 31: 3461–3467.CrossRefGoogle Scholar
  30. Malley, D. F., H. Rönicke, D. L. Findlay & B. Zippel, 1999. Feasibility of using near-infrared reflectance spectroscopy for the analysis of C, N, P, and diatoms in lake sediments. J. Paleolim. 21: 295–306.CrossRefGoogle Scholar
  31. Malley, D. F., L. Lockhart, P. Wilkinson & B. Hauser, 2000. Determination of carbon, carbonate, nitrogen, and phosphorus in freshwater sediments by near-infrared reflectance spectroscopy: rapid analysis and a check on conventional analytical methods. J. Paleolim. 24: 415–425.CrossRefGoogle Scholar
  32. Martens, H. & T. Nass, 1989. Multivariate Calibration. John Wiley & Sons, New York, 419 pp.Google Scholar
  33. McClure, W. F, 1994. NIR spectrosopy: the giant is running strong. Analytical Chemistry 66: 43A–52A.Google Scholar
  34. McLellan, T. M., J. D. Aber, M. E. Martin, J. M. Melillo & K. J. Nadelhoffer, 1991a. Determination of nitrogen, lignin and cellulose content of decomposing leaf material by near infrared reflectance spectroscopy. Can. J. Forest. Res. 21: 1684–1688.Google Scholar
  35. McLellan, T. M., M. E. Martin, J. D. Aber, J. M. Melillo, K. J. Nadelhoffer & B. Deway, 1991b. Comparison of wet chemistry and near-infrared reflectance measurements of carbon fraction chemistry and nitrogen concentration of forest foliage. Can. J. Forest. Res. 21: 1689–1693.Google Scholar
  36. McTiernan, K. B., M. H. Garnett, D. Mauquoy, P. Ineson & M. M. Coûteaux, 1998. Use of near infrared reflectance spectroscopy (N1RS) in palaeoecological studies of peat. Holocene 8: 729–740.CrossRefGoogle Scholar
  37. Nilsson, M., T. Korsman, A. Nordgren, C. Palmborg, I. Renberg & J. Öhman, 1992. NIR spectroscopy used in the microbiological and environmental sciences. In Hildrum, K. I., T. Isaksson, T. Næs & A. Tandberg (eds.) Near Infra-red Spectroscopy: Bridging the Gap Between Data Analysis and NIR Applications. Ellis Horwood, New York: 229–234.Google Scholar
  38. Nilsson, M. B., E. Dåbakk, T. Korsman & I. Renberg, 1996. Quantifying relationships between nearin-fraredreflectance spectra of lake sediments and water chemistry. Environ. Sci. Technol. 30: 2586–2590.CrossRefGoogle Scholar
  39. Norris, K. 1998. Interaction among instrument bandpass, instrument noise, sample absorber bandwidth and calibration error. NIR News 9: 3–5.Google Scholar
  40. Osborne, B. G. & T. Fearn, 1986. Near Infrared Spectroscopy in Food Analysis. John Wiley & Sons, New York, 200 pp.Google Scholar
  41. Rosén, P., E. Dåbakk, I. Renberg, M. Nilsson & R. Hall, 2000. Near-infrared spectrometry (NIRS): a new tool to infer past climatic changes from lake sediments. Holocene 10: 161–166.Google Scholar
  42. Skoog, D. A. & J. J. Leary, 1992. Principles of Instrumental Analysis. Saunders College Publishing, Forth Worth, 879 pp.Google Scholar
  43. Stenberg, B.O., E. Nordkvist & L. Salomonsson, 1995. Use of near-infrared reflectance spectra of soils for objective selection of samples. Soil Sci. 159: 109–114.Google Scholar
  44. Williams, P., 1987. Variables affecting near-infrared reflectance spectroscopic analysis. In Williams, P. & K. Norris (eds.) Near-infrared Technology in the Agricultural and Food Industries. American Association of Cereal Chemists, St. Paul, Minnesota, USA: 143–167.Google Scholar
  45. Wold, S., H. Antti, F. Lindgren & J. Öhman, 1998. Orthogonal signal correction of NIR spectra. Chemometrics Intellig. Lab. Systems 44: 175–185.Google Scholar

Copyright information

© Kluwer Academic Publishers 2002

Authors and Affiliations

  • Tom Korsman
    • 1
  • Ingemar Renberg
    • 1
  • Eigil DÅBakk
    • 2
    • 3
  • Mats B. Nilsson
    • 4
  1. 1.Department of Ecology and Environmental ScienceUmeåUniversityUmeåSweden
  2. 2.Department of Ecology and Environmental ScienceUmeå UniversityUmeåSweden
  3. 3.Department of Organic ChemistryUmeå UniversityUmeåSweden
  4. 4.Department of Forest EcologySwedish University of Agricultural SciencesUmeåSweden

Personalised recommendations