Skip to main content

Invasive Hemodynamic Monitoring

  • Chapter
The Sepsis Text

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Parker MM, Shelhamer JH, Natanson C, et al. Serial cardiovascular variables in survivors and nonsurvivors of human septic shock: heart rate as an early predictor of prognosis. Crit Care Med 1987; 15:923–929

    PubMed  CAS  Google Scholar 

  2. Houston MC, Thompson WL, Robertson D. Shock. Diagnosis and management. Arch Intern Med 1984; 144:1433–1439

    Article  PubMed  CAS  Google Scholar 

  3. Groeneveld AB, Thijs LG. Pulmonary artery catheterization in septic shock. Indications, thearpeutic and prognostic implications. Clin Intens Care 1990; 1:111–115

    CAS  Google Scholar 

  4. Groeneveld AB, Thijs LG. Haemodynamic monitoring in septic shock. In: Dhainaut JF, Payen D (eds) Strategy in Bedside Haemodynamic Monitoring. Update in Intensive Care and Emergency Medicine, volume 11. Springer Verlag, Berlin 1991: pp 179–197

    Google Scholar 

  5. Perel A, Pizov R, Cotev S. Systolic blood pressure variation is a sensitive indicator of hypovolemia in ventilated dogs subjected to graded hemorrhage. Anesthesiology 1987; 67:498–502

    PubMed  CAS  Google Scholar 

  6. Tavernier B, Makhotine O, Lebuffe G, et al. Systolic pressure variation as a guide to fluid therapy in patients with sepsis-induced hypotension. Anesthesiology 1998; 89:1313–1321

    Article  PubMed  CAS  Google Scholar 

  7. Michard F, Chemla D, Richard C, et al. Clinical use of respiratory changes in arterial pulse pressure to monitor the hemodynamic effects of PEEP. Am J Respir Crit Care Med 1999; 159:935–939

    PubMed  CAS  Google Scholar 

  8. Connors AF Jr, McCaffree DR, Gray BA. Evaluation of right-heart catheterization in the critically ill patient without acute myocardial infarction. N Engl J Med 1983; 308:263–267

    Article  PubMed  Google Scholar 

  9. Schneider AJ, Teule GJ, Groeneveld AB, et al. Biventricular performance during volume loading in patients with early septic shock, with emphasis on the right ventricle: a combined hemodynamic and radionuclide study. Am Heart J 1988; 116:103–112

    Article  PubMed  CAS  Google Scholar 

  10. Kimchi A, Ellrodt AG, Berman DS, et al. Right ventricular performance in septic shock: a combined radionuclide and hemodynamic study. J Am Coll Cardiol 1984; 4:945–951

    PubMed  CAS  Google Scholar 

  11. D’Orio V, Mendes P, Saad G, et al. Accuracy in early prediction of prognosis of patients with septic shock by analysis of simple indices: prospective study. Crit Care Med 1990; 18:1339–1345

    Google Scholar 

  12. Vincent JL, Reuse C, Frank N, et al. Right ventricular dysfunction in septic shock: assessment by measurements of right ventricular ejection fraction using the thermodilution technique. Acta Anaesthesiol Scand 1989; 33:34–38

    Article  PubMed  CAS  Google Scholar 

  13. Sibbald WJ, Paterson NA, Holliday RL, et al. Pulmonary hypertension in sepsis: measurement by the pulmonary arterial diastolic-pulmonary wedge pressure gradient and the influence of passive and active factors. Chest 1978; 73:583–591

    PubMed  CAS  Google Scholar 

  14. Marland AM, Glauser FL. Significance of the pulmonary artery diastolic-pulmonary wedge pressure gradient in sepsis. Crit Care Med 1982; 10:658–661

    PubMed  CAS  Google Scholar 

  15. Taylor AE, Cope DK, Allison RC, et al. Capillary pressure measurement in human lungs. In: Zapol WM, Lemaire F (eds). Adult Respiratory Distress Syndrome. New York: Marcel Dekker, 1990

    Google Scholar 

  16. Gaar KA Jr, Taylor AE, Owens LJ, et al. Pulmonary capillary pressure and filtration coefficient in the isolated perfused lung. Am J Physiol 1967; 213:910–914

    PubMed  Google Scholar 

  17. Cope DK, Allison RC, Parmentier JL, et al. Measurement of effective pulmonary capillary pressure using the pressure profile after pulmonary artery occlusion. Crit Care Med 1986; 14:16–22

    PubMed  CAS  Google Scholar 

  18. Cope DK, Parker JC, Allison RC, et al. Gaar equation is not a reliable predictor of pulmonary capillary pressure. Crit Care Med 1989; 17:300–301

    PubMed  CAS  Google Scholar 

  19. Levy MM. Pulmonary capillary pressure and tissue perfusion: clinical implications during resuscitation from shock. New Horiz 1996; 4:504–518

    PubMed  CAS  Google Scholar 

  20. Collee GG, Lynch KE, Hill RD, et al. Bedside measurement of pulmonary capillary pressure in patients with acute respiratory failure. Anesthesiology 1987; 66:614–620

    PubMed  CAS  Google Scholar 

  21. Parker MM, Shelhamer JH, Bacharach SL, et al. Profound but reversible myocardial depression in patients with septic shock. Ann Intern Med 1984; 100:483–490

    PubMed  CAS  Google Scholar 

  22. Parker MM, McCarthy KE, Ognibene FP, et al. Right ventricular dysfunction and dilatation, similar to left ventricular changes, characterize the cardiac depression of septic shock in humans. Chest 1990; 97:126–131

    PubMed  CAS  Google Scholar 

  23. Tyberg JV, Taichman GC, Smith ER, et al. The relationship between pericardial pressure and right atrial pressure: an intraoperative study. Circulation 1986; 73:428–432

    PubMed  CAS  Google Scholar 

  24. Jardin F, Valtier B, Beauchet A, et al. Invasive monitoring combined with two-dimensional echocardiographic study in septic shock. Intensive Care Med 1994; 20:550–554

    PubMed  CAS  Google Scholar 

  25. Ognibene FP, Parker MM, Natanson C, et al. Depressed left ventricular performance. Response to volume infusion in patients with sepsis and septic shock. Chest 1988; 93:903–910

    PubMed  CAS  Google Scholar 

  26. Nemens EJ, Woods SL. Normal fluctuations in pulmonary artery and pulmonary capillary wedge pressures in acutely ill patients. Heart Lung 1982; 11:393–398

    PubMed  CAS  Google Scholar 

  27. Packman MI, Rackow EC. Optimum left heart filling pressure during fluid resuscitation of patients with hypovolemic and septic shock. Crit Care Med 1983; 11:165–169

    PubMed  CAS  Google Scholar 

  28. Vincent JL, Thirion M, Brimioulle S, et al. Thermodilution measurement of right ventricular ejection fraction with a modified pulmonary artery catheter. Intensive Care Med 1986; 12:33–38

    Article  PubMed  CAS  Google Scholar 

  29. Dhainaut JF, Brunet F, Monsallier JF, et al. Bedside evaluation of right ventricular performance using a rapid computerized thermodilution method. Crit Care Med 1987; 15:148–152

    PubMed  CAS  Google Scholar 

  30. Mitsuo T, Shimazaki S, Matsuda H. Right ventricular dysfunction in septic patients. Crit Care Med 1992; 20:630–634

    PubMed  CAS  Google Scholar 

  31. Yu M, Takiguchi S, Takanishi D, et al. Evaluation of the clinical usefulness of thermodilution volumetric catheters. Crit Care Med 1995; 23:681–686

    PubMed  CAS  Google Scholar 

  32. Weisel RD, Berger RL, Hechtman HB. Current concepts measurement of cardiac output by thermodilution. N Engl J Med 1975; 292:682–684

    Article  PubMed  CAS  Google Scholar 

  33. Cigarroa RG, Lange RA, Williams RH, et al. Underestimation of cardiac output by thermodilution in patients with tricuspid regurgitation. Am J Med 1989; 86:417–420

    PubMed  CAS  Google Scholar 

  34. Renner LE, Morton MJ, Sakuma GY. Indicator amount, temperature, and intrinsic cardiac output affect thermodilution cardiac output accuracy and reproducibility. Crit Care Med 1993; 21:586–597

    PubMed  CAS  Google Scholar 

  35. Lang RM, Borow KM, Neumann A, et al. Systemic vascular resistance: an unreliable index of left ventricular afterload. Circulation 1986; 74:1114–1123

    PubMed  CAS  Google Scholar 

  36. Glower DD, Spratt JA, Snow ND, et al. Linearity of the Frank-Starling relationship in the intact heart: the concept of preload recruitable stroke work. Circulation 1985; 71:994–1009

    PubMed  CAS  Google Scholar 

  37. Smith RL, Meixler SM, Simberkoff MS. Excess mortality in critically ill patients with nosocomial bloodstream infections. Chest 1991; 100:164–167

    PubMed  CAS  Google Scholar 

  38. Pittet D, Tarara D, Wenzel RP. Nosocomial bloodstream infection in critically ill patients. Excess length of stay, extra costs, and attributable mortality. JAMA 1994 25; 271:1598–1601

    Google Scholar 

  39. Mermel LA, Maki DG. Infectious complications of Swan Ganz Pulmonary Artery Catheters and Peripheral Arterial Catheters. In: Seifert H, Jansen B, Farr BM (eds) Catheter-Related Infections, Dekker, New York, 1997

    Google Scholar 

  40. Cobb DK, High KP, Sawyer RG, et al. A controlled trial of scheduled replacement of central venous and pulmonary-artery catheters. N Engl J Med 1992; 327:1062–1068

    Article  PubMed  CAS  Google Scholar 

  41. Eyer S, Brummitt C, Crossley K, et al. Catheter-related sepsis: prospective, randomized study of three methods of long-term catheter maintenance. Crit Care Med 1990; 18:1073–1079

    PubMed  CAS  Google Scholar 

  42. Neumann P. Extravascular lung water and intrathoracic blood volume: double versus single indicator dilution technique. Intensive Care Med 1999; 25:216–219

    Article  PubMed  CAS  Google Scholar 

  43. Sakka SG, Rühl CC, Pfeiffer UJ, et al. Assessment of cardiac preload and extravascular lung water by single transpulmonary thermodilution. Intensive Care Med 2000; 26:180–187

    PubMed  CAS  Google Scholar 

  44. Pavek K, Lindquist O, Arfors K-E. Validity of thermodilution method for measurement of cardiac output in pulmonary oedema. Cardiovasc Res 1973; 7:419–422

    Article  PubMed  CAS  Google Scholar 

  45. Wickerts C-J, Jakobsson J, Frostell C, et al. Measurement of extravascular lung water by thermal-dye technique: mechanisms of cardiac output dependence. Intensive Care Med 1990; 16:115–120

    Article  PubMed  CAS  Google Scholar 

  46. Bock JC, Barker BC, Mackersie RC, et al. Cardiac output measurements using femoral artery thermodilution in patients. J Crit Care 1989; 4:106–111

    Google Scholar 

  47. Lewis FR, Elings VB, Hill SL, et al. The measurement of extravascular lung water by thermal-green dye indicator dilution. Ann N Y Acad Sci 1982, 384:394–410

    PubMed  CAS  Google Scholar 

  48. von Spiegel T, Wietasch G, Bürsch J, et al. HZV-Bestimmung mittels transpulmonaler Thermodilution. Eine Alternative zum Pulmonaliskatheter? Anaesthesist 1996; 45:1045–1050

    Article  Google Scholar 

  49. Gödje O, Peyerl M, Seebauer T, et al. Reproducibility of double indicator dilution measurements of intrathoracic blood volume compartments, extravascular lung water, and liver function. Chest 1998; 113:1070–1077

    PubMed  Google Scholar 

  50. Murdoch IA, Marsh MJ, Morrison G. Measurement of cardiac output in children. In: Vincent J-L (ed). Yearbook of Intensive Care and Emergency Medicine 1995. Berlin-Heidelberg-New York: Springer-Verlag, 1995; pp. 606–614

    Google Scholar 

  51. Sakka SG, Reinhart K, Meier-Hellmann A. Comparison of pulmonary artery and arterial thermodilution cardiac output in critically ill patients. Intensive Care Med 1999; 25:843–846

    Article  PubMed  CAS  Google Scholar 

  52. Lichtwarck-Aschoff M, Beale R, Pfeiffer UJ. Central venous pressure, pulmonary artery occlusion pressure, intrathoracic blood volume, and right ventricular end-diastolic volume as indicators of cardiac preload. J Crit Care 1996; 11:180–188

    Article  PubMed  CAS  Google Scholar 

  53. Preisman S, Pfeiffer U, Lieberman N, et al. New monitors of intravascular volume: a comparison of arterial pressure waveform analysis and the intrathoracic blood volume. Intensive Care Med 1997; 23:651–657

    Article  PubMed  CAS  Google Scholar 

  54. Lichtwarck-Aschoff M, Zeravik J, Pfeiffer UJ. Intrathoracic blood volume accurately reflects circulatory volume status in critically ill patients with mechanical ventilation. Intensive Care Med 1992; 18:142–147

    PubMed  CAS  Google Scholar 

  55. Borelli M, Benini A, Denkewitz T, et al. Effects of continuous negative extrathoracic pressure versus positive end-expiratory pressure in acute lung injury patients. Crit Care Med 1998; 26:1025–1031

    PubMed  CAS  Google Scholar 

  56. Hoeft A, Schorn B, Weyland A, et al. Bedside assessment of intravascular volume status in patients undergoing coronary bypass surgery. Anesthesiology 1994; 81:76–86

    Article  PubMed  CAS  Google Scholar 

  57. Hoeft A. Transpulmonary indicator dilution: an alternative approach for hemodynamic monitoring. In: Vincent J-L (ed). Yearbook of Intensive Care and Emergency Medicine 1995. Springer-Verlag, Heidelberg 1995; pp. 593–605

    Google Scholar 

  58. Sakka SG, Bredle DL, Reinhart K, et al. Comparison between intrathoracic blood volume and cardiac filling pressures in the early phase of hemodynamic instability of patients with sepsis or septic shock. J Crit Care 1999; 14:78–83

    Article  PubMed  CAS  Google Scholar 

  59. Hoyt JD, Leatherman JW. Interpretation of the pulmonary artery occlusion pressure in mechanically ventilated patients with large respiratory excursions in intrathoracic pressure. Intensive Care Med 1997; 23:1125–1131

    Article  PubMed  CAS  Google Scholar 

  60. Oppenheimer L, Elings VB, Lewis FR. Thermal-dye lung water measurements: effects of edema and embolization. J Surg Res 1979; 26:504–512

    Article  PubMed  CAS  Google Scholar 

  61. Sibbald WJ, Warshawski FJ, Short AK, et al. Clinical studies of measuring extravascular lung water by the thermal dye technique in critically ill patients. Chest 1983; 83:725–731

    PubMed  CAS  Google Scholar 

  62. Sibbald WJ, Short AK, Warshawski FJ, et al. Thermal dye measurements of extravascular lung water in critically ill patients. Intravascular Starling forces and extravascular lung water in the adult respiratory distress syndrome. Chest 1985; 87:585–592

    PubMed  CAS  Google Scholar 

  63. Colmenero-Ruiz M, Fernández-Mondéjar E, Fernández-Sacristán MA, et al. PEEP and low tidal volume ventilation reduce lung water in porcine pulmonary edema. Am J Respir Crit Care Med 1997; 155:964–970

    PubMed  CAS  Google Scholar 

  64. Zeravik J, Borg U, Pfeiffer UJ. Efficacy of pressure support ventilation dependent on extravascular lung water. Chest 1990; 97:1412–1419

    PubMed  CAS  Google Scholar 

  65. Mitchell JP, Schuller D, Calandrino FS, et al. Improved outcome based on fluid management in critically ill patients requiring pulmonary artery catheterization. Am Rev Respir Dis 1992; 145:990–998

    PubMed  CAS  Google Scholar 

  66. Ellrodt AG, Riedinger MS, Kimchi A, et al. Left ventricular performance in septic shock: reversible segmental and global abnormalities. Am Heart J 1985; 110:402–409

    Article  PubMed  CAS  Google Scholar 

  67. Appleyard RF, Glantz SA. Two dimensions describe left ventricular volume change during hemodynamic transients. Am J Physiol 1990; 258:H277–284

    PubMed  CAS  Google Scholar 

  68. Reich DL, Konstadt SN, Nejat M, et al. Intraoperative transesophageal echocardiography for the detection of cardiac preload changes induced by transfusion and phlebotomy in pediatric patients. Anesthesiology 1993; 79:10–15

    PubMed  CAS  Google Scholar 

  69. Cheung AT, Savino JS, Weiss SJ, et al. Echocardiographic and hemodynamic indexes of left ventricular preload in patients with normal and abnormal ventricular function. Anesthesiology 1994; 81:376–387

    PubMed  CAS  Google Scholar 

  70. Hüttemann E Intrathoracic blood volume versus echocardiographic parameters. Clin Intensive Care 1996; 7:S20 (Abst)

    Google Scholar 

  71. Savino JS, Troianos CA, Aukburg S, et al. Measurement of pulmonary blood flow with transesophageal two-dimensional and Doppler echocardiography. Anesthesiology 1991; 75:445–451

    PubMed  CAS  Google Scholar 

  72. Darmon PL, Hillel Z, Mogtader A, et al. Cardiac output by transesophageal echocardiography using continuous-wave Doppler across the aortic valve. Anesthesiology 1994; 80:796–805

    PubMed  CAS  Google Scholar 

  73. Poelaert J, Declerck C, Vogelaers D, et al. Left ventricular systolic and diastolic function in septic shock. Intensive Care Med 1997; 23:553–560

    Article  PubMed  CAS  Google Scholar 

  74. Munt B, Jue J, Gin K, et al. Diastolic filling in human severe sepsis: an echocardiographic study. Crit Care Med 1998; 26:1829–1833

    PubMed  CAS  Google Scholar 

  75. Connors AF Jr, Speroff T, Dawson NV, et al. The effectiveness of right heart catheterization in the initial care of critically ill patients. SUPPORT Investigators. JAMA 1996 18; 276:889–897

    Google Scholar 

  76. Parker MM, Peruzzi W. Pulmonary artery catheters in sepsis/septic shock. New Horiz 1997; 5:228–232

    PubMed  CAS  Google Scholar 

  77. Gnaegi A, Feihl F, Perret C. Intensive care physicians’ insufficient knowledge of right-heart catheterization at the bedside: time to act? Crit Care Med 1997; 25:213–220

    PubMed  CAS  Google Scholar 

  78. Vincent JL, Dhainaut JF, Perret C, et al. Is the pulmonary artery catheter misused? A European view. Crit Care Med 1998; 26:1283–1287

    PubMed  CAS  Google Scholar 

  79. Bastos PG, Knaus WA, Zimmerman JE, et al. The importance of technology for achieving superior outcomes from intensive care. Brazil APACHE III Study Group. Intensive Care Med 1996; 22:664–669

    PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Kluwer Academic Publishers

About this chapter

Cite this chapter

Huettemann, E., Sakka, S.G., Reinhart, K. (2002). Invasive Hemodynamic Monitoring. In: Vincent, JL., Carlet, J., Opal, S.M. (eds) The Sepsis Text. Springer, Boston, MA. https://doi.org/10.1007/0-306-47664-9_16

Download citation

  • DOI: https://doi.org/10.1007/0-306-47664-9_16

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-7923-7620-0

  • Online ISBN: 978-0-306-47664-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics