Skip to main content

Apoptosis and the Resolution of Inflammation in Sepsis

  • Chapter
The Sepsis Text
  • 298 Accesses

Conclusion

This review has emphasized the multiple different pathways that are involved in the resolution of inflammation including the role of cytokines, caspases, bcl-2 and other genes, free radicals, endotoxin, other bacterial components, death receptors, ceramide, endogenous glucocorticoids and adhesion molecules to portray just how complex the controls on cell emigration and death are. Just because inhibitors or promoters of one aspect of these regulatory mechanisms exist and work in one situation does not mean that these will be a universal panacea. For example G-CSF, which prolongs neutrophil survival, reduces complications from severe pneumonia while IL-10, which increases neutrophil apoptosis, also improves the resolution of pulmonary inflammation [61,71].

In summary it is clear that apoptosis is a key event in the normal resolution of inflammation. Emigration, particularly of macrophages, is another fundamental route for inflammatory cell clearance. Both clearance mechanisms are controlled by complex regulatory mechanisms. We need to understand these processes very clearly before attempting to manipulate the resolution of inflammation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bone RC. Sir Isaac Newton, sepsis, SIRS, and CARS. Crit Care Med 1996; 24:1125–1128

    PubMed  CAS  Google Scholar 

  2. Docke WD, Randow F, Syrbe U, et al. Monocyte deactivation in septic patients: restoration by IFN-gamma treatment. Nat Med 1997; 3:678–681

    PubMed  CAS  Google Scholar 

  3. Haslett C. Granulocyte apoptosis and its role in the resolution and control of lung inflammation. Am J Respir Crit Care Med 1999; 160:S5–S11

    PubMed  CAS  Google Scholar 

  4. Bellingan GJ, Caldwell H, Howie SE, et al. In vivo fate of the inflammatory macrophage during the resolution of inflammation: inflammatory macrophages do not die locally, but emigrate to the draining lymph nodes. J Immunol 1996; 157:2577–2585

    PubMed  CAS  Google Scholar 

  5. Mangan DF, Wahl SM. Differential regulation of human monocyte programmed cell death (apoptosis) by chemotactic factors and pro-inflammatory cytokines. J Immunol 1991; 147:3408–3412

    PubMed  CAS  Google Scholar 

  6. Stern M, Savill J, Haslett C. Human monocyte-derived macrophage phagocytosis of senescent eosinophils undergoing apoptosis. Mediation by alpha v beta 3/CD36/thrombospondin recognition mechanism and lack of phlogistic response. Am J Pathol 1996;149:911–921

    PubMed  CAS  Google Scholar 

  7. Cohen JJ. Programmed cell death and apoptosis in lymphocyte development and function. Chest 1993; 103:99S–101S

    PubMed  CAS  Google Scholar 

  8. Savill JS, Wyllie AH, Henson JE, et al. Macrophage phagocytosis of aging neutrophils in inflammation. Programmed cell death in the neutrophil leads to its recognition by macrophages. J Clin Invest 1989; 83:865–875

    PubMed  CAS  Google Scholar 

  9. Savill J, Hogg N, Ren Y, et al. Thrombospondin cooperates with CD36 and the vitronectin receptor in macrophage recognition of neutrophils undergoing apoptosis. J Clin Invest 1992; 90:1513–1522

    PubMed  CAS  Google Scholar 

  10. Tsokos GC, Liossis SN. Lymphocytes, cytokines, inflammation, and immune trafficking. Curr Opin Rheumatol 1998; 10:417–425

    PubMed  CAS  Google Scholar 

  11. Mahidhara R, Billiar TR. Apoptosis in sepsis. Crit Care Med. 2000; 28:N105–N113

    PubMed  CAS  Google Scholar 

  12. Bellingan G. Inflammatory cell activation in sepsis. Br Med Bull 1999; 55:12–29

    PubMed  CAS  Google Scholar 

  13. Bone RC, Balk RA, Cerra FB, et al. Definitions for sepsis and organ failure and guidelines for the use of innovative therapies in sepsis. The ACCP/SCCM Consensus Conference Committee. American College of Chest Physicians/Society of Critical Care Medicine. Chest 1992; 101:1644–1655

    PubMed  CAS  Google Scholar 

  14. Antonelli M. Sepsis and septic shock: pro-inflammatory or anti-inflammatory state? J Chemother 1999; 11:536–540

    PubMed  CAS  Google Scholar 

  15. Bellingan GJ. Immune dysfunction associated with critical illness. In: Webb AR, Shapiro MJ, Singer M, Suter P (Eds). Oxford textbook of critical care. Oxford University Press, Oxford, 1999, pp. 898–902

    Google Scholar 

  16. Mannick JA. Trauma, sepsis and immune defects In: Faist E, Meakins JL, Schildberg FW (eds) Host defense dysfunction in trauma shock and sepsis. Springer-Verlag, Berlin 1993, pp. 15–21

    Google Scholar 

  17. Volk HD, Reinke P, Docke WD. Clinical aspects: from systemic inflammation to ‘immunoparalysis’. Chem Immunol 2000; 74:162–177

    PubMed  CAS  Google Scholar 

  18. Albina JE, Reichner JS. Nitric oxide in inflammation and immunity. New Horiz 1995; 3:46–64

    PubMed  CAS  Google Scholar 

  19. Ayala A, Lehman DL, Herdon CD, et al. Mechanism of enhanced susceptibility to sepsis following hemorrhage. Interleukin-10 suppression of T-cell response is mediated by eicosanoid-induced interleukin-4 release. Arch Surg 1994; 129:1172–1178

    PubMed  CAS  Google Scholar 

  20. Ayala A, Chaudry IH. Immune dysfunction in murine polymicrobial sepsis: mediators, macrophages, lymphocytes and apoptosis. Shock 1996; 6 Suppl 1:S27–S38

    PubMed  Google Scholar 

  21. Barthlen W, Klemens C, Rogenhofer S, et al. Critical role of nitric oxide for proliferation and apoptosis of bone-marrow cells under septic conditions. Ann Hematol 2000; 79:249–254

    Article  PubMed  CAS  Google Scholar 

  22. Hiramatsu M, Hotchkiss RS, Karl IE, et al. Cecal ligation and puncture (CLP) induces apoptosis in thymus, spleen, lung, and gut by an endotoxin and TNF-independent pathway. Shock 1997; 7:247–253

    PubMed  CAS  Google Scholar 

  23. Ayala A, Xin Xu Y, Ayala CA, et al. Increased mucosal B-lymphocyte apoptosis during polymicrobial sepsis is a Fas ligand but not an endotoxin-mediated process. Blood 1998; 91:1362–1372

    PubMed  CAS  Google Scholar 

  24. Hotchkiss RS, Swanson PE, Freeman BD, et al. Apoptotic cell death in patients with sepsis, shock, and multiple organ dysfunction. Crit Care Med 1999; 27:1230–1251

    PubMed  CAS  Google Scholar 

  25. Stefanec T. Endothelial apoptosis: could it have a role in the pathogenesis and treatment of disease? Chest 2000; 117:841–854

    Article  PubMed  CAS  Google Scholar 

  26. Papathanassoglou ED, Moynihan JA, Ackerman MH. Does programmed cell death (apoptosis) play a role in the development of multiple organ dysfunction in critically ill patients? a review and a theoretical framework. Crit Care Med 2000; 28:537–549

    PubMed  CAS  Google Scholar 

  27. Kerr JF, Wyllie AH, Currie AR. Apoptosis: a basic biological phenomenon with wideranging implications in tissue kinetics. Br J Cancer 1972; 26:239–257

    PubMed  CAS  Google Scholar 

  28. Metchnikoff E Immunity to infectious diseases. Translated from French by Binnie FG 1905. Cambridge University Press, London

    Google Scholar 

  29. Van Parijs L, Abbas AK. Homeostasis and self-tolerance in the immune system: turning lymphocytes off. Science 1998; 280:243–248

    Article  PubMed  Google Scholar 

  30. Akbar AN, Borthwick N, Salmon M, et al. The significance of low bcl-2 expression by CD45RO T cells in normal individuals and patients with acute viral infections. The role of apoptosis in T cell memory. J Exp Med 1993; 178:427–438

    Article  PubMed  CAS  Google Scholar 

  31. Zychlinsky A, Prevost MC, Sansonetti PJ. Shigella flexneri induces apoptosis in infected macrophages. Nature 1992; 358:167–169

    Article  PubMed  CAS  Google Scholar 

  32. Ellis HM, Horvitz HR. Genetic control of programmed cell death in the nematode C. elegans. Cell 1986; 44:817–829

    Article  PubMed  CAS  Google Scholar 

  33. Hengartner MO, Horvitz HR. C. elegans cell survival gene ced-9 encodes a functional homolog of the mammalian proto-oncogene bcl-2. Cell 1994;76:665–676

    Article  PubMed  CAS  Google Scholar 

  34. Hannah S, Cotter TG, Wyllie AH, et al. The role of oncogene products in neutrophil apoptosis. Biochem Soc Trans 1994; 22:253S

    Google Scholar 

  35. Camapana D, Cleveland JL. Regulation of apoptosis in normal hemopoiesis and hematological disease In: Brenner MK, Hoffbrand AV (eds) Recent Advances in Haematology. Churchill Livingstone, New York, 1996

    Google Scholar 

  36. Lee A, Whyte MK, Haslett C. Inhibition of apoptosis and prolongation of neutrophil functional longevity by inflammatory mediators. J Leukoc Biol. 1993; 54:283–288

    PubMed  CAS  Google Scholar 

  37. Jimenez MF, Watson RW, Parodo J, et al. Dysregulated expression of neutrophil apoptosis in the systemic inflammatory response syndrome. Arch Surg 1997; 132:1263–1269

    PubMed  CAS  Google Scholar 

  38. Keel M, Ungethum U, Steckholzer U, et al. Interleukin-10 counterregulates proinflammatory cytokine-induced inhibition of neutrophil apoptosis during severe sepsis. Blood 1997; 90:3356–3363

    PubMed  CAS  Google Scholar 

  39. Obeid LM, Linardic CM, Karolak LA, et al. Programmed cell death induced by ceramide. Science 1993; 259:1769–1771

    PubMed  CAS  Google Scholar 

  40. De Nadai C, Sestili P, Cantoni O, et al. Nitric oxide inhibits tumor necrosis factor-alphainduced apoptosis by reducing the generation of ceramide. Proc Natl Acad Sci USA 2000; 97:5480–5485

    PubMed  Google Scholar 

  41. Hannah S, Mecklenburgh K, Rahman I, et al. Hypoxia prolongs neutrophil survival in vitro. FEBS Lett 1995; 372:233–237

    Article  PubMed  CAS  Google Scholar 

  42. Freeman BD, Reaume AG, Swanson PE, et al. Role of CuZn superoxide dismutase in regulating lymphocyte apoptosis during sepsis. Crit Care Med 2000; 28:1701–1708

    PubMed  CAS  Google Scholar 

  43. Meagher LC, Cousin JM, Seckl JR, et al. Opposing effects of glucocorticoids on the rate of apoptosis in neutrophilic and eosinophilic granulocytes. J Immunol 1996; 156:4422–4428

    PubMed  CAS  Google Scholar 

  44. Wong HR. Potential protective role of the heat shock response in sepsis. New Horiz 1998; 6:194–200

    PubMed  CAS  Google Scholar 

  45. Ashkenazi A, Dixit VM. Death receptors: signaling and modulation. Science 1998; 281:1305–1308

    Article  PubMed  CAS  Google Scholar 

  46. Earnshaw WC, Martins LM, Kaufmann SH. Mammalian caspases: structure, activation, substrates, and functions during apoptosis. Annu Rev Biochem 1999; 68:383–424

    Article  PubMed  CAS  Google Scholar 

  47. Daemen MA, van’ t Veer C, Denecker G, et al. Inhibition of apoptosis induced by ischemia-reperfusion prevents inflammation. J Clin Invest 1999; 104:541–549

    Article  PubMed  CAS  Google Scholar 

  48. Li H, Colbourne F, Sun P et al. Caspase inhibitors reduce neuronal injury after focal but not global cerebral ischemia in rats. Stroke 2000; 31:176–182

    PubMed  CAS  Google Scholar 

  49. Brenner C, Kroemer G. Apoptosis. Mitochondria—the death signal integrators. Science 2000; 289:1150–1151

    Article  PubMed  CAS  Google Scholar 

  50. Hart SP, Dougherty GJ, Haslett C, et al. CD44 regulates phagocytosis of apoptotic neutrophil granulocytes, but not apoptotic lymphocytes, by human macrophages. J Immunol 1997; 159:919–925

    PubMed  CAS  Google Scholar 

  51. Fadok VA, Savill JS, Haslett C, et al. Different populations of macrophages use either the vitronectin receptor or the phosphatidylserine receptor to recognize and remove apoptotic cells. J Immunol 1992; 149:4029–4035

    PubMed  CAS  Google Scholar 

  52. Meagher LC, Savill JS, Baker A, et al. Phagocytosis of apoptotic neutrophils does not induce macrophage release of thromboxane B2. J Leukoc Biol 1992; 52:269–273

    PubMed  CAS  Google Scholar 

  53. Brown SB, Savill J. Phagocytosis triggers macrophage release of Fas ligand and induces apoptosis of bystander leukocytes. J Immunol 1999; 162:480–485

    PubMed  CAS  Google Scholar 

  54. McDonald PP, Fadok VA, Bratton D, et al. Transcriptional and translational regulation of inflammatory mediator production by endogenous TGF-beta in macrophages that have ingested apoptotic cells. J Immunol 1999; 163:6164–6172

    PubMed  CAS  Google Scholar 

  55. Bellingan GJ, Chua F, Cooksley H, et al. Macrophage-mesothelial adhesion may regulate the resolution of acute peritoneal inflammation. Am J Resp Crit Care Med 2000; 161:A844(Abst)

    Google Scholar 

  56. Murray J, Barbara JA, Dunkley SA, et al. Regulation of neutrophil apoptosis by tumor necrosis factor-alpha: requirement for TNFR55 and TNFR75 for induction of apoptosis in vitro. Blood. 1997; 90:2772–2783

    PubMed  CAS  Google Scholar 

  57. Ward C, Chilvers ER, Lawson MF, et al. NF-kappaB activation is a critical regulator of human granulocyte apoptosis in vitro. J Biol Chem 1999; 274:4309–4318

    PubMed  CAS  Google Scholar 

  58. Klein JB, Rane MJ, Scherzer JA, et al. Granulocyte-macrophage colony-stimulating factor delays neutrophil constitutive apoptosis through phosphoinositide 3-kinase and extracellular signal-regulated kinase pathways. J Immunol 2000; 164:4286–4291

    PubMed  CAS  Google Scholar 

  59. Sookhai S, Wang JH, McCourt M, et al. Dopamine induces neutrophil apoptosis through a dopamine D-1 receptor-independent mechanism. Surgery 1999; 126:314–322

    PubMed  CAS  Google Scholar 

  60. Dransfield I, Buckle AM, Savill J, et al. Neutrophil apoptosis is associated with a reduction in CD16 (Fc gamma RIII) expression. J Immunol 1994; 153:1254–1263

    PubMed  CAS  Google Scholar 

  61. Cox G. IL-10 enhances resolution of pulmonary inflammation in vivo by promoting apoptosis of neutrophils. Am J Physiol 1996; 271:L566–L571

    PubMed  CAS  Google Scholar 

  62. Hotchkiss RS, Tinsley KW, Swanson PE, et al. Prevention of lymphocyte cell death in sepsis improves survival in mice. Proc Natl Acad Sci USA 1999; 96:14541–14546

    Article  PubMed  CAS  Google Scholar 

  63. Hotchkiss RS, Swanson PE, Cobb JP, et al. Apoptosis in lymphoid and parenchymal cells during sepsis: findings in normal and T-and B-cell-deficient mice. Crit Care Med 1997; 25:1298–1307

    PubMed  CAS  Google Scholar 

  64. Ayala A, Chung CS, Xu YX, et al. Increased inducible apoptosis in CD4+ T lymphocytes during polymicrobial sepsis is mediated by Fas ligand and not endotoxin. Immunology 1999; 97:45–55

    Article  PubMed  CAS  Google Scholar 

  65. Ayala A, Xu YX, Chung CS, et al. Does Fas ligand or endotoxin contribute to thymic apoptosis during polymicrobial sepsis? Shock 1999; 11:211–217

    PubMed  CAS  Google Scholar 

  66. Tinsley KW, Cheng SL, Buchman TG, et al. Caspases-2,-3,-6, and-9, but not caspase-1, are activated in sepsis-induced thymocyte apoptosis. Shock 2000; 13:1–7

    Article  PubMed  CAS  Google Scholar 

  67. Hotchkiss RS, Swanson PE, Knudson CM, et al. Overexpression of Bcl-2 in transgenic mice decreases apoptosis and improves survival in sepsis. J Immunol 1999; 162:4148–4156

    PubMed  CAS  Google Scholar 

  68. Hotchkiss RS, Tinsley KW, Hui JJ, et al. p53-dependent and-independent pathways of apoptotic cell death in sepsis. J Immunol 2000; 164:3675–80

    PubMed  CAS  Google Scholar 

  69. Cobb JP, Hotchkiss RS, Swanson PE, et al. Inducible nitric oxide synthase (iNOS) gene deficiency increases the mortality of sepsis in mice. Surgery 1999; 126:438–442

    PubMed  CAS  Google Scholar 

  70. Glynne PA, Evans TJ. Inflammatory cytokines induce apoptotic and necrotic cell shedding from human proximal tubular epithelial cell monolayers. Kidney Int 1999; 55:2573–2597

    Article  PubMed  Google Scholar 

  71. Nelson S, Belknap SM, Carlson RW, et al. A randomized controlled trial of filgrastim as an adjunct to antibiotics for treatment of hospitalized patients with community-acquired pneumonia. CAP Study Group. J Infect Dis 1998; 178:1075–1080

    PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Kluwer Academic Publishers

About this chapter

Cite this chapter

Bellingan, G.J. (2002). Apoptosis and the Resolution of Inflammation in Sepsis. In: Vincent, JL., Carlet, J., Opal, S.M. (eds) The Sepsis Text. Springer, Boston, MA. https://doi.org/10.1007/0-306-47664-9_13

Download citation

  • DOI: https://doi.org/10.1007/0-306-47664-9_13

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-7923-7620-0

  • Online ISBN: 978-0-306-47664-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics