Skip to main content

Hormonal Regulation of Begging Behaviour

  • Chapter
The Evolution of Begging

Abstract

Begging is the first coordinated behaviour altricial birds perform after hatching. As the neuromuscular substrates, brain, sensory organs and endocrine systems mature, this simple reflex develops rapidly into a more complex behaviour that is influenced by external stimuli and by internal signals such as hormones. In this chapter we discuss the maturation of endocrine systems and the role of hormones in the regulation of begging in altricial birds and describe the development of physiological systems that may influence begging performance. First, we elaborate on the neuromuscular and sensory substrates that may be involved in the begging response. Then, we describe the development and maturation of relevant endocrine regulatory systems that may influence intensity, frequency and duration of begging. We also discuss effects of endogenous and maternally-derived hormones on the development, regulation and performance of begging. Finally, we suggest several approaches to the study of begging that may be useful for testing evolutionary theories such as parent-offspring conflict, sibling rivalry and parental favouritism.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adkins-Regan, E. 1990. Hormonal bases of sexual differentiation in birds. In: Hormones, Brain and Behaviour in Vertebrates. I. Sexual Differentiation, Neuroanatomical Aspects, Neurotransmitters, and Neuropeptides (Ed. by J. Balthazart). Basel: S. Karger.

    Google Scholar 

  • Adkins-Regan, E., Ottinger, M.A. & Park, J. 1995. Maternal transfer of estradiol to egg yolks alters sexual differentiation of avian offspring. Journal of Experimental Zoology 271, 466–470.

    Article  CAS  Google Scholar 

  • Andrew, R.J. 1975. Effects of testosterone on the behaviour of the domestic chick. II. Effects present in both sexes. Animal Behaviour 23, 156–168.

    PubMed  CAS  Google Scholar 

  • Arnold, A. P. & Gorski, R.A. 1984. Gonadal steroid induction of structural sex differences in the central nervous system. Annual Review of Neuroscience 7, 413–442.

    Article  PubMed  CAS  Google Scholar 

  • Arnold, A.P. & Schlinger, B.A. 1993. Sexual differentiation of brain and behavior: the zebra finch is not just a flying rat. Brain, Behavior and Evolution 42, 231–241.

    PubMed  CAS  Google Scholar 

  • Ashmore, C.R., Addis, P.B., Doerr, L. & Stokes, H. 1973. Development of muscle fibers in the complexus muscle of normal and dystrophic chicks. Journal of Histochemistry and Cytochemistry 21, 266–278.

    PubMed  CAS  Google Scholar 

  • Bahr, J.M., Wang, S.C., Huang, M.Y. & Calvo, F.O. 1983. Steroid concentrations in isolated theca and granulosa layers of preovulatory follicles during the ovulatory cycle of the domestic hen. Biology of Reproduction 29, 326–334.

    Article  PubMed  CAS  Google Scholar 

  • Bellabarba, D., Belisle, S., Gallo-Payet, N. & Lehoux, J.G. 1988. Mechanism of action of thyroid hormones during chick embryogenesis. American Zoologist 28, 389–399.

    CAS  Google Scholar 

  • Birkhead, T., Schwabl, H. & Burke, T. 2000. Testosterone and maternal effects: integrating mechanisms and function. Trends in Ecology and Evolution 15, 86–87.

    Article  PubMed  Google Scholar 

  • Bock, W.J. & Hikida, R.S. 1968. An analysis of twitch and tonus fibers in the hatching muscle. Condor 70, 211–222.

    Google Scholar 

  • Brantley, R.K., Marchaterre, M.A. & Bass, A.H. 1993. Androgen effects on vocal muscle structure in a teleost fish with inter-and intra-sexual dimorphism. Journal of Morphology 216, 305–318.

    Article  PubMed  CAS  Google Scholar 

  • Burch, W.M., Weir, S. & Van Wyk, J.J. 1986. Embryonic chick cartilage produces its own somatomedin-like peptide to stimulate cartilage growth in vitro. Endocrinology 119, 1370–1376.

    PubMed  CAS  Google Scholar 

  • Carsia, R.V., Morin, M.E., Rosen, H.D. & Weber, H. 1987. Ontogenic corticosteroidogenesis of the domestic fowl: response of isolated adrenocortical cells. Proceedings of the Society for Experimental Biology and Medicine 184, 436–445.

    PubMed  CAS  Google Scholar 

  • Clifton, P.G., Andrew, R.J. & Brighton, L. 1988. Gonadal steroids and attentional mechanisms in young domestic chicks. Physiology and Behavior 43, 441–446.

    Article  PubMed  CAS  Google Scholar 

  • Connaughton, M.A. & Taylor, M.H. 1995. Effects of exogenous testosterone on sonic muscle mass in the weakfish, Cygnoscion regalis. General and Comparative Endocrinology 100, 238–245.

    Article  PubMed  CAS  Google Scholar 

  • de la Mora, A.N., Drummond, H. & Wingfield, J.C. 1996. Hormonal correlates of dominance and starvation-induced aggression in chicks of the blue-footed booby. Ethology 102, 748–761.

    Google Scholar 

  • de Pablo, F. & de la Rosa, J. 1995. The developing CNS: a scenario for the action of proinsulin, insulin, and insulin-like growth factors. Trends in Neuroscience 18, 143–150.

    Google Scholar 

  • de Pablo, F., Roth, J., Hernandez, E. & Pruss, R.M. 1982. Insulin is present in chicken eggs and early chick embryos. Endocrinology 111, 1909–1916.

    Article  PubMed  Google Scholar 

  • Deviche, P. 1992. Testosterone and opioids interact to regulate feeding in a male migratory songbird. Hormones and Behavior 26, 394–405.

    Article  PubMed  CAS  Google Scholar 

  • Donham, R.S. 1979. Annual cycle of plasma luteinizing hormone and sex hormones in male and female mallards (Anas platyrhynchos). Biology of Reproduction 21, 1273–1285.

    Article  PubMed  CAS  Google Scholar 

  • Eising, C.M., Eikenaar, C., Schwabl, H. & Groothuis, T.G.G. 2001. Maternal androgens in black-headed gull (Larus ridibundus) eggs: consequences for chick development. Proceedings of the Royal Society of London, Series B 268, 839–846.

    Article  CAS  Google Scholar 

  • Eising, C.M., Eikenaar, C. & Groothuis, T.G. in press. Maternal androgens and hatching asynchrony in black-headed gulls: an experimental field study. Advances in Ethology.

    Google Scholar 

  • Etches, R.J. & Cheng, K.W. 1981. Changes in the plasma concentrations of luteinizing hormone, progesterone, oestradiol, and testosterone and in the binding of follicle-stimulating hormone to the theca of follicles during the ovulation cycle of the hen (Gallus domesticus). Journal of Endocrinology 91, 11–22.

    PubMed  CAS  Google Scholar 

  • Fazekas, S., Fehér, G., Kondics, L., Óváry, I. & Székessy Hermann, V. 1985. Purification and properties of myosin from the “hatching muscle” (m. complexus) of geese. Acta Physiologica Hungarica 66, 5–25.

    PubMed  CAS  Google Scholar 

  • Fisher, H.I. 1958. The “hatching muscle” in the chick. The Auk 75, 391–399.

    Google Scholar 

  • French, J.B. Jr., Nisbet, I.C.T. & Schwabl, H. 2001. Maternalsteroids and contaminants in common tern eggs: a mechanism of endocrine disruption? Comparative Biochemistry and Physiology C 128, 91–98.

    Google Scholar 

  • Gahr, M., Metzdorf, R. & Aschenbrenner, S. 1996. The ontogeny of the canary HVC revealed by the expression of androgen and estrogen receptors. Developmental Neuroscience 8, 311–315.

    CAS  Google Scholar 

  • Gil, D., Graves, J., Hazon, N. & Wells, A. 1999. Male attractiveness and differential testosterone investment in zebra finch eggs. Science 286, 126–128.

    Article  PubMed  CAS  Google Scholar 

  • Godfray, H.C.J. 1995. Signaling of need between the parent and the young: parent-offspring conflict and sibling rivalry. American Naturalist 146, 1–24.

    Article  Google Scholar 

  • Gross, G.H. 1985. Innervation of the complexus (“hatching”) muscle of the chick. Journal of Comparative Neurology 232, 180–189.

    PubMed  CAS  Google Scholar 

  • Hammond, R.W., Olson, D.M., Frenkel, R.B., Biellier, H.V. & Hertelendy, F. 1980. Prostaglandins and steroid hormones in plasma and ovarian follicles during the ovulation cycle of the domestic hen (Gallus domesticus). General and Comparative Endocrinology 42, 195–202.

    Article  PubMed  CAS  Google Scholar 

  • Heath, J.A. & Dufty, A.M. Jr. 1998. Body condition and the adrenal stress response in captive American kestrel juveniles. Physiological Zoology 71, 67–73.

    Article  PubMed  CAS  Google Scholar 

  • Holmes, W.N. & Kelley, M.E. 1976. The turnover and distribution of labelled corticosterone during post-natal development of the duckling, Anas platyrhynchos. Pflügers Archive 365, 145–150.

    CAS  Google Scholar 

  • Holmes, W.N., Cronshaw, J., Collie, M.A. & Rohde, K.D. 1992. Cellular aspects of the stress response in precocial neonates. Ornis Scandinavica 23, 388–397.

    Google Scholar 

  • Johnsen, A.L. & van Tienhoven, A. 1980. Plasma concentrations of six steroids and LH during the ovulatory cycle of the hen, Gallus domesticus. Biology of Reproduction 23, 386–393.

    Google Scholar 

  • Joubert, Y., Tobin, C. & Lebart, M.C. 1994. Testosterone-induced masculinization of the rat levator ani muscle during puberty. Developmental Biology 162, 104–110.

    Article  PubMed  CAS  Google Scholar 

  • Kalliecharan, R. & Hall, B.K. 1976. A developmental study of the levels of progesterone, corticosterone, cortisol, and cortisone in the adrenal glands of the embryonic chick. General and Comparative Endocrinology 30, 404–409.

    Article  PubMed  CAS  Google Scholar 

  • Karten, H. & Hodos, W. 1967. A Stereotaxic Atlas of the Brain of the Pigeon (Columba livia). Baltimore: Johns Hopkins Press.

    Google Scholar 

  • Kawata, M. 1995. Roles of steroid hormones and their receptors in structural organization in the nervous system. Neuroscience Research 24, 1–46.

    Article  PubMed  CAS  Google Scholar 

  • Kedar, H., Rodríguez-Gironés, M.A., Yedvab, S., Winkler, D.W. & Lotem, A. 2000. Experimental evidence for offspring learning in parent-offspring communication. Proceedings of the Royal Society of London, Series B 267, 1723–1727.

    CAS  Google Scholar 

  • Kikuchi, T. & Ashmore, C.R. 1976. Developmental aspects of the innervation of skeletal muscle fibers in the chick embryo. Cell Tissue Research 171, 233–251.

    PubMed  CAS  Google Scholar 

  • King, D.B. & Scanes, C.G. 1986. Effect of mammalian growth hormone and prolactin on the growth of hypophysectomized chickens. Proceedings of the Society for Experimental Biology and Medicine 182, 201–207.

    PubMed  CAS  Google Scholar 

  • Kitayski, A.S., Piatt, J.F., Wingfield, J.C. & Romano, M. 1999. The adrenocortical stress-response of black-legged kittiwake chicks in relation to dietary restrictions. Journal of Comparative Physiology B 169, 303–310.

    Google Scholar 

  • Kitayski, A.S., Wingfield, J.C. & Piatt, J.F. 2001. Corticosterone facilitates begging and affects resource allocation in the black-legged kittiwake. Behavioral Ecology 12, 619–625.

    Google Scholar 

  • Lipar, J.L. & Ketterson, E.D. 2000. Maternally derived yolk testosterone enhances the development of the hatching muscle in the red-winged blackbird Agelaius phoeniceus. Proceedings of the Royal Society of London, Series B 267, 2005–2010.

    Article  CAS  Google Scholar 

  • Lipar, J.L., Ketterson, E.D. & Nolan, V. Jr. 1999. Intra-clutch variation in testosterone content of red-winged blackbird eggs. The Auk 116, 231–235.

    Google Scholar 

  • Mann, M.A. & Svare, B. 1983. Prenatal testosterone exposure elevates maternal aggression in mice. Physiology and Behavior 30, 503–507.

    PubMed  CAS  Google Scholar 

  • Marie, C. 1981. Ontogenesis of the adrenal glucocorticoids and of the target function of the enzymatic tyrosine transaminase activity on the chick embryo. Journal of Endocrinology 90, 193–200.

    Article  PubMed  CAS  Google Scholar 

  • McNabb, F.M.A. 1992. Thyroid Hormones. Englewood Cliffs: Prentice Hall.

    Google Scholar 

  • McNabb, F.M.A. & King, D.B. 1993. Thyroid hormone effects on growth, development and metabolism. In: The Endocrinology of Growth, Development, and Metabolism of Vertebrates (Ed. by M.P. Schreibman, C.G. Scanes & P.K.T. Pang). San Diego: Academic Press.

    Google Scholar 

  • McNabb, F.M.A. & Wilson, C.M. 1997. Thyroid hormone deposition in avian eggs and effects on embryonic development. American Zoologist 37, 553–560.

    CAS  Google Scholar 

  • McNabb, F.M.A., Scanes, C.G. & Zeman, M. 1998. The endocrine system. In: Avian Growth and Development: Evolution within the Altricial-Precocial Spectrum (Ed. by J.M. Starck & R.E. Ricklefs). New York: Oxford University Press.

    Google Scholar 

  • McNichols, M.J. & McNabb, F.M.A. 1988. Development of thyroid function and its pituitary control in embryonic and hatchling precocial Japanese quail and altricial ring doves. General and Comparative Endocrinology 69, 109–118.

    Google Scholar 

  • McRae, S.B., Weatherhead, P.J. & Montgomerie, R. 1993. American robin nestlings compete by jockeying for position. Behavioral Ecology and Sociobiology 33, 101–106.

    Article  Google Scholar 

  • Migliaccio, S., Newbold, R.R., Bullock, B.C., Jefferson, W.J., Sutton, F.G. & McLachlan, J.A. 1996. Alterations of maternal estrogen levels during gestation affect the skeleton of female offspring. Endocrinology 137, 2118–2125.

    Article  PubMed  CAS  Google Scholar 

  • Murota, S.-I. & Tamaoki, B.I. 1967. Metabolism of progesterone and testosterone by chick cartilage in vitro. Biochimica and Biophysica Acta 137, 347–355.

    CAS  Google Scholar 

  • Nunez, J. 1984. Effects of thyroid hormones during brain differentiation. Molecular and Cellular Endocrinology 37, 125–132.

    Article  PubMed  CAS  Google Scholar 

  • O’Neill, I.E., Houston, B. & Goddard, C. 1990. Stimulation of insulin-like growth factor-I production in primary cultures of chicken hepatocytes by chicken growth hormone. Molecular and Cellular Endocrinology 70, 41–47.

    Google Scholar 

  • Pohlman, A.G. 1919. Concerning the causal factor in the hatching of the chick, with particular reference to the musculus complexus. Anatomical Record 17, 89–104.

    Article  Google Scholar 

  • Reid, F.A., Gasc, J.M., Stumpf, W.E. & Sar, M. 1981. Androgen target cells in spinal cord, spinal ganglia, and glycogen body of chick embryos. Experimental Brain Research 44, 243–248.

    Article  CAS  Google Scholar 

  • Royle, N.J., Surai, P.F. & Hartley, I.R. 2001. Maternally derived androgens and antioxidants in bird eggs: complementary but opposing effects? Behavioral Ecology 12, 381–385.

    Article  Google Scholar 

  • Rydén, O. & Bengtsson, H. 1980. Differential begging and locomotory behaviour by early and late hatched nestlings affecting the distribution of food in asynchronously hatched broods of altricial birds. Zeitschrift für Tierpsychologie 53, 209–224.

    Google Scholar 

  • Sapolsky, R.M., Krey, L.C. & McEwen, B.S. 1996. The neuroendocrinology of stress and aging: the glucocorticoid cascade hypothesis. Endocrine Reviews 7, 284–301.

    Google Scholar 

  • Scanes, C.G., Hart, L.E., Decuypere, E. & Kuhn, E.R. 1987. Endocrinology of the avian embryo: an overview. Journal of Experimental Zoology 1, 253–264.

    PubMed  CAS  Google Scholar 

  • Scavo, L., Alemany, J., Roth, J. & de Pablo, F. 1989. Insulin-like growth factor-I activity is stored in the yolk of the avian egg. Biochemical and Biophysical Research Communications 162, 1167–1173.

    Article  PubMed  CAS  Google Scholar 

  • Schwabl, H. 1993. Yolk is a source of maternal testosterone for developing birds. Proceedings of the National Academy of Sciences USA 90, 11446–11450.

    CAS  Google Scholar 

  • Schwabl, H. 1996a. Environment modifies the testosterone levels of the female bird and its eggs. Journal of Experimental Zoology 276, 157–163.

    Article  PubMed  CAS  Google Scholar 

  • Schwabl, H. 1996b. Maternal testosterone in the avian egg enhances postnatal growth. Comparative Biochemistry and Physiology 114A, 271–276.

    CAS  Google Scholar 

  • Schwabl, H. 1997. The contents of maternal testosterone in house sparrow Passer domesticus eggs vary with breeding conditions. Naturwissenschaften 84, 406–408.

    Article  PubMed  CAS  Google Scholar 

  • Schwabl, H. 1999. Developmental changes and among-sibling variation of corticosterone levels in an altricial avian species. General and Comparative Endocrinology 116, 403–408.

    Article  PubMed  CAS  Google Scholar 

  • Schwabl, H., Mock, D.W. & Gieg, J.A. 1997. A hormonal mechanism for parental favouritism. Nature 386, 231.

    Article  CAS  Google Scholar 

  • Sechman, A. & Bobek, S. 1988. Presence of iodothyronines in the yolk of the hen’s egg. General and Comparative Endocrinology 69, 99–105.

    Article  PubMed  CAS  Google Scholar 

  • Shahabi, N.A., Norton, H.W. & Nalbandov, A.V. 1975. Steroid levels in follicles and the plasma of hens during the ovulatory cycle. Endocrinology 96, 962–968.

    PubMed  CAS  Google Scholar 

  • Sidor, C.A. & Blackburn, D.G. 1998. Effects of testosterone administration and castration on the forelimb musculature of male leopard frogs, Rana pipiens. Journal of Experimental Zoology 280, 28–37.

    CAS  Google Scholar 

  • Silverin, B. & Sharp, P. 1996. The development of the hypothalamic-pituitary-gonadal axis in juvenile great tits. General and Comparative Endocrinology 103, 150–166.

    PubMed  CAS  Google Scholar 

  • Sims, C.G. & Holberton, R.L. 2000. Development of the corticosterone stress response in young northern mockingbirds (Mimus polyglottos). General and Comparative Endocrinology 119, 193–201.

    Article  PubMed  CAS  Google Scholar 

  • Sockman, K.W. & Schwabl, H. 2000. Yolk androgens reduce offspring survival. Proceedings of the Royal Society of London, Series B 267, 1451–1456.

    Article  CAS  Google Scholar 

  • Sockman, K.W. & Schwabl, H. 2001. Plasma corticosterone in nestling American kestrels: effects of age, handling stress, yolk androgens, and body condition. General and Comparative Endocrinology 122, 205–212.

    Article  PubMed  CAS  Google Scholar 

  • Starck, J.M. 1993. Evolution of avian ontogenies. Current Ornithology 10, 275–366.

    Google Scholar 

  • Stockdale, F.E. & Miller, J.B. 1987. The cellular basis of myosin heavy chain isoform expression during development of avian skeletal muscles. Developmental Biology 123, 1–9.

    Article  PubMed  CAS  Google Scholar 

  • Tanabe, Y., Saito, N. & Nakamura, T. 1986. Ontogenetic steroidogenesis by testes, ovary, and adrenals of embryonic and postembryonic chickens (Gallus domesticus). General and Comparative Endocrinology 63, 456–463.

    Article  PubMed  CAS  Google Scholar 

  • Wada, N., Miyata, H., Tomita, R., Ozawa, S. & Tokuriki, M. 1999. Histochemical analysis of fiber composition of skeletal muscles in pigeons and chickens. Archives Italiennes de Biologie 137, 75–82.

    PubMed  CAS  Google Scholar 

  • Watanabe, T. & Ohmori, Y. 1988. Location of motoneurons supplying upper neck muscles in the chicken studied by means of horseradish peroxidase. Journal of Comparative Neurology 270, 271–278.

    Article  PubMed  CAS  Google Scholar 

  • Wentworth, B.C. & Hussein, M.O. 1985. Serum corticosterone levels in embryos, newly hatched and young turkey poults. Poultry Science 65, 2195–2201.

    Google Scholar 

  • Wikelski, M., Lynn, S., Breuner, C., Wingfield, J.C. & Kenagy, G.J. 1999. Energy metabolism, testosterone and corticosterone in white-crowned sparrows. Journal of Comparative Physiology A 185, 463–470.

    CAS  Google Scholar 

  • Williams, T.D., Dawson, A., Nicholls, T.J. & Goldsmith, A.R. 1987. Reproductive endocrinology of free-living nestling and juvenile starlings, Sturnus vulgaris — an altricial species. Journal of Zoology 212, 619–628.

    Article  CAS  Google Scholar 

  • Wilson, C.M. & McNabb, F.M.A. 1997. Maternal thyroid hormones in Japanese quail eggs and their influence on embryonic development. General and Comparative Endocrinology 107, 153–165.

    Article  PubMed  CAS  Google Scholar 

  • Wingfield, J.C. & Farner, D.S. 1978a. The annual cycle of plasma irLH and steroid hormones in feral populations of the white-crowned sparrow, Zonotrichia leucophrys gambelli. Biology of Reproduction 19, 1046–1056.

    Article  PubMed  CAS  Google Scholar 

  • Wingfield, J.C. & Farner, D.S. 1978b. The endocrinology of a natural breeding population of the white-crowned sparrow (Zonotrichia leucophrys pugetensis). Physiological Zoology 51, 188–205.

    CAS  Google Scholar 

  • Wise, P.M. & Frye, B.E. 1973. Functional development of the hypothalamo-hypophyseal-adrenal cortex axis in the chick embryo, Gallus domesticus. Experimental Zoology 185, 277–292.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Kluwer Academic Publishers

About this chapter

Cite this chapter

Schwabl, H., Lipar, J. (2002). Hormonal Regulation of Begging Behaviour. In: Wright, J., Leonard, M.L. (eds) The Evolution of Begging. Springer, Dordrecht. https://doi.org/10.1007/0-306-47660-6_12

Download citation

  • DOI: https://doi.org/10.1007/0-306-47660-6_12

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-1-4020-0571-8

  • Online ISBN: 978-0-306-47660-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics