Skip to main content

Regulation of Cellular Genes by Cytomegalovirus

  • Chapter
  • 208 Accesses

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Ahn, J.-H., and Hayward, G. S. (1997). The major immediate-early proteins IE1 and IE2 of human cytomegalovirus colocalize with and disrupt PML-associated nuclear bodies at very early times in infected permissive cells. J. Virol. 71, 4599–4613.

    PubMed  CAS  Google Scholar 

  • Ahn, J.-H., Xu, Y., Jang, W.-J., Matunis, M., and Hayward, G. S. (2001). Evaluation of interactions of human cytomegalovirus immediate-early IE2 regulatory protein with small ubiquitin-like modifiers and their conjugation enzyme Ubc9. J. Virol. 75, 3859–3872

    Article  PubMed  CAS  Google Scholar 

  • Ahn, J. H., Brignole, E., and Hayward, G. S. (1998). Disruption of PML subnuclear domains by the acidic IE1 protein of human cytomegalovirus is mediated through interaction with PML and may modulate a RING finger-dependent cryptic transactivator function of PML. Mol. Cell. Biol. 18, 4899–4913.

    PubMed  CAS  Google Scholar 

  • Albrecht, T., Boldogh, I., Fons, M., Abubakar, S., and Deng, C. Z. (1990). Cell activation signals and the pathogenesis of human cytomegalovirus infection. Intervirology 31, 68–75.

    PubMed  CAS  Google Scholar 

  • Albrecht, T., Fons, M. P., Boldogh, I., Abubakar, I., Deng, S., and Millinoff, D. (1991). Metabolic and cellular effects of human cytomegalovirus infection. Transplant. Proc. 23, 48–55.

    PubMed  CAS  Google Scholar 

  • Alford, C. A., and Britt, W. J. (1990). Cytomegalovirus. In B. N. Fields, D. M. Knipe, et al (ed.), Raven Press, Ltd., New York, 1981–2010.

    Google Scholar 

  • Angulo, A., Messerle, M., Griffiths, M., and Ghazal, P. (2000). In vitro and in vivo characterization of an enhancerless murine cytomegalovirus. 25th International Herpesvirus Workshop, Portland, OR.

    Google Scholar 

  • Baldick, C. J., Marchini, A., Patterson, C. E., and Shenk, T. (1997). Human cytomegalovirus tegument protein pp71 (ppUL82) enhances the infectivity of viral DNA and accelerates the infectious cycle. J. Virol. 71, 4400–4408.

    PubMed  CAS  Google Scholar 

  • Biron, K. K., Fyfe, J. A., Stanat, S. C., Leslie, K., Sorrell, J. A., and Lambe, C. U. (1986). A human cytomegalovirus mutant resistant to the nucleoside analog 9-[2-hydroxy-l-(hydroxymethyl)ethoxy]methylguanine(BW B759U) induces reduced levels of BW B759U triphosphate. Proc. Natl. Acad. Sci. USA 83, 8769–8773.

    PubMed  CAS  Google Scholar 

  • Boldogh, I., AbuBakar, S., and Albrecht, T. (1990). Activation of proto-oncogenes: an immediate early event in human cytomegalovirus infection. Science 247, 561–564.

    PubMed  CAS  Google Scholar 

  • Boldogh, I., AbuBakar, S., Deng, C. Z., and Albrecht, T. (1991). Transcriptional activation of cellular oncogenes fos, jun, and myc by human cytomegalovirus. J. Virol. 65, 1568–1571.

    PubMed  CAS  Google Scholar 

  • Bonin, L. R., and McDougall, J. K. (1997). Human cytomegalovirus IE2 86-kilodalton protein binds p53 but does not abrogate G1 checkpoint function. J. Virol. 71, 5861–5870.

    PubMed  CAS  Google Scholar 

  • Boyle, K. A., Pietropaolo, R. L., and Compton, T. (1999). Engagement of the cellular receptor for glycoprotein B of human cytomegalovirus activates the interferon-responsive pathway. Mol. Cell. Biol. 19, 3607–3613.

    PubMed  CAS  Google Scholar 

  • Brehm, A., Miska, E. A., McCance, D. J., Reid, J. L., Bannister, A. J., and Kouzarides, T. (1998). Retinoblastoma protein recruits histone deacetylase to repress transcription. Nature 239, 597–601.

    Google Scholar 

  • Bresnahan, W. A., Albrecht, T., and Thompson, E. A. (1998). The cyclin E promoter is activated by human cytomegalovirus 86-kDa immediate early protein. J. Biol. Chem. 273, 22075–22082.

    Article  PubMed  CAS  Google Scholar 

  • Bresnahan, W. A., Boldogh, I., Chi, P., Thompson, E. A., and Albrecht, T. (1997). Inhibition of cellular Cdk2 activity blocks human cytomegalovirus replication. Virology 231, 239–247.

    Article  PubMed  CAS  Google Scholar 

  • Bresnahan, W. A., Boldogh, I., Thompson, E. A., and Albrecht, T. (1996). Human cytomegalovirus inhibits cellular DNA synthesis and arrests productively infected cells in late G1. Virology 224, 150–160.

    Article  PubMed  CAS  Google Scholar 

  • Bresnahan, W. A., and Shenk, T. (2000a). Subset of viral transcripts packaged within human cytomegalovirus particles. Science 288, 2373–2376.

    Article  PubMed  CAS  Google Scholar 

  • Bresnahan, W. A., and Shenk, T. E. (2000b). UL82 virion protein activates expression of immediate early viral genes in human cytomegalovirus-infected cells. Proc. Natl. Acad. of Sci. USA 97, 14506–14511.

    CAS  Google Scholar 

  • Bresnahan, W. A., Thompson, E. A., and Albrecht, T. (1997). Human cytomegalovirus infection results in altered Cdk2 subcellular localization. J. Gen. Virol. 78, 1993–1997.

    PubMed  CAS  Google Scholar 

  • Britt, W. J., and Mach, M. (1996). Human cytomegalovirus glycoproteins. Intervirology 39, 401–412.

    PubMed  CAS  Google Scholar 

  • Bruggeman, C. A., and van Dam-Mieras, M. C. E. (1991). The possible role of cytomegalovirus in atherogenesis. Progr. Med. Virol. 38, 1–26.

    CAS  Google Scholar 

  • Brune, W., Menard, C., Heesemann, J., and Koszinowski, U. H. (2001). A ribonucleotide reductase homolog of cytomegalovirus and endothelial cell tropism. Science 291, 303–305.

    Article  PubMed  CAS  Google Scholar 

  • Castillo, J. P., Yurochko, A. D., and Kowalik, T. F. (2000). Role of human cytomegalovirus immediate-early proteins in cell growth control. J. Virol. 74, 8028–8037.

    Article  PubMed  CAS  Google Scholar 

  • Chen, J., and Stinski, M. F. (2000). Activation of transcription of the human cytomegalovirus early UL4 promoter by the Ets transcription factor binding element. J. Virol. 74, 9845–9857.

    PubMed  CAS  Google Scholar 

  • Chen, Z., Knutson, E., Kurosky, A., and Albrecht, T. (2001). Degradation of p21Cip1 in cells productively infected with human cytomegalovirus. J. Virol. 75, 3613–3625.

    PubMed  CAS  Google Scholar 

  • Clarke, A. R., Purdie, C. A., Harrison, D. J., Morris, R. G., Bird, C. C., Hooper, M. L., and Wyllie, A. H. (1993). Tymocyte apoptosis induced by p53-dependent and independent pathways. Nature 362, 849–852.

    PubMed  CAS  Google Scholar 

  • Colberg-Poley, A. M. (1996). Functional roles of immediate early proteins encoded by the human cytomegalovirus UL36-38, UL115-119, TRS1/IRS1 and US3 loci. Intervirology 39, 350–360.

    PubMed  CAS  Google Scholar 

  • Everett, R. D. (2000). ICP0 induces the accumulation of colocalizing conjugated ubiquitin. J. Virol. 74, 9994–10005.

    Article  PubMed  CAS  Google Scholar 

  • Fish, K. N., Britt, W., and Nelson, J. A. (1996). A novel mechanism for persistence of human cytomegalovirus in macrophages. J. Virol. 70, 1855–1862.

    PubMed  CAS  Google Scholar 

  • Fortunato, E. A., Sommer, M. H., Yoder, K., and Spector, D. H. (1997). Identification of domains within the human cytomegalovirus major immediate-early 86-kilodalton protein and the retinoblastoma protein required for physical and functional interaction with each other. J. Virol. 71, 8176–8185.

    PubMed  CAS  Google Scholar 

  • Francoise, M. J., Jault, J., Ruchti, F., Fortunato, A., Clark, C., Corbeil, J., Richman, D. D., and Spector, D. H. (1995). Cytomegalovirus infection induces high levels of cyclins, phosphorylated Rb, and p53, leading to cell cycle arrest. J. Virol. 69, 6697–6704.

    Google Scholar 

  • Goldmacher, V. S., Bartle, L. M., Skaletskaya, A., Dionne, C. A., Nedersha, N. L., Vater, C. A., Han, J.-W., Lutz, R. J., Watanabe, S., McFarland, E. D. C., Kieff, E. D., Mocarski, E. S., and Chittenden, T. (1999). A cytomegalovirus-encoded mitrochondria-localized inhibitor of apoptosis structurally unrelated to Bcl-2. Proc. Natl Acad. Sci. USA 96, 12536–12541.

    Article  PubMed  CAS  Google Scholar 

  • Greaves, R. F., and Mocarski, E. S. (1998). Detective growth correlates with reduced accumulation of viral DNA replication protein after low-multiplicity infection by a human cytomegalovirus ie1 mutant. J. Virol. 72, 366–379.

    PubMed  CAS  Google Scholar 

  • Gribaudo, G., Riera, L., Lembo, D., De Andrea, M., Gariglio, M., Rudge, T. L., Johnson, L. F., and Landolfo, S. (2000). Murine cytomegalovirus stimulates cellular thymidylate synthase gene expression in quiescent cells and requires the enzyme for replication. J. Virol. 74, 4979–4987.

    Article  PubMed  CAS  Google Scholar 

  • Hagemeier, C., Caswell, R., Hayhurst, G., Sinclair, J., and Kouzarides, T. (1994). Functional interaction between the HCMV IE2 transactivator and the retinoblastoma protein. EMBO J. 13, 2897–2903.

    PubMed  CAS  Google Scholar 

  • Hahn, G., Jores, R., and Mocarski, E. S. (1998). Cytomegalovirus remains latent in a common precursor of dendritic and myeloid cells. Proc. Natl. Acad. Sci. 95, 3937–3942.

    PubMed  CAS  Google Scholar 

  • Harel, N. Y., and Alwine, J. C. (1998). Phosphorylation of the human cytomegalovirus 86-kilodalton immediate-early protein IE2. J. Virol. 72, 5481–5492.

    PubMed  CAS  Google Scholar 

  • Hensel, G. M., Meyer, H. H., Buchman, I., Pommerehne, D., Schmolke, B., Plachter, B., Radsak, K., and Kern, H. F. (1996). Intracellular localization and expression of the human cytomegalovirus matrix protein pp71 (UL82): evidence for its translocation to the nucleus. J. Gen. Virol. 77, 3087–3097.

    Article  PubMed  CAS  Google Scholar 

  • Ho, M. (1991). Cytomegalovirus: Biology and Infection. Plenum Publishing Corp., New York.

    Google Scholar 

  • Hofman, H., Floss, S., and Stamminger, T. (2000). Covalent modification of the transactivator protein IE2-86 of human cytomegalovirus by conjugation to the ubiquitin-homologous proteins SUM0-1 and hSMT3b. J. Virol. 74, 2510–2524.

    Google Scholar 

  • Hofmann, H., Sindre, H., and Stamminger, T. (2000). Functional interaction between the pp71 protein of human cytomegalovirus and the PML-interacting protein hDAXX. 25th International Herpesvirus Workshop, Portland, OR.

    Google Scholar 

  • Homer, E. G., Rinaldi, A., Nicholi, M. J., and Preston, C. M. (1999). Activation of herpesvirus gene expression by the human cytomegalovirus protein pp71. J Virol. 73, 8512–8518.

    PubMed  CAS  Google Scholar 

  • Jault, F. M., Jault, J.-M., Ruchti, F., Fortunato, E. A., Clark, C., Corbeil, J., Richman, D. D., and Spector, D. H. (1995). Cytomegalovirus infection induces high levels of cyclins, phosphorylated RB, and p53, leading to cell cycle arrest. J. Virol. 69, 6697–6704.

    PubMed  CAS  Google Scholar 

  • Johnson, R. A., Huong, S. M., and Huang, E. S. (2000). Activation of the mitogen-activated protein kinase p38 by human cytomegalovirus infection through two distinct pathways: a novel mechanism for activation of p38. J. Virol. 74, 1158–1167.

    PubMed  CAS  Google Scholar 

  • Kondo, K., Kaneshima, H., and Mocarski, E. S. (1994). Human cytomegalovirus latent infection of granulocyte-macrophage progenitors. Proc. Natl. Acad. Sci. USA 91, 11879–11883.

    PubMed  CAS  Google Scholar 

  • Kurz, S., Steffens, H.-P., Mayer, A., Harris, J. R., and Reddehase, M. J. (1997). Latency versus persistence or intermittent recurrences: Evidence for a latent state of murine cytomegalovirus in the lungs. J. Virol. 71, 2980–2987.

    PubMed  CAS  Google Scholar 

  • Kurz, S. K.., Rapp, M., Steffens, H.-P., Grzimek, N. K. A., Schmalz, S., and Reddehase, M. J. (1999). Focal transcriptional activity of murine cytomegalovirus during latency in the lungs. J. Virol. 73, 482–494.

    PubMed  CAS  Google Scholar 

  • Liu, B., and Stinski, M. F. (1992). Human cytomegalovirus contains a tegument protein that enhances transcription from promoters with upstream ATF and AP-1 cis-acting elements. J. Virol. 66, 4434–4444.

    PubMed  CAS  Google Scholar 

  • Lu Hayashi, M., Blankenship, C., and Shenk, T. (2000). Human cytomegalovirus UL69 protein is required for efficient accumulation of infected cells in the G1 phase of the cell cycle. Proc. Natl. Acad. Sci. USA 97, 2692–2696.

    Google Scholar 

  • Lu, M., and Shenk, T. (1996). Human cytomegalovirus infection inhibits cell cycle progression at multiple points including the transition from Gt to S. J. Virol. 70, 8850–8857.

    PubMed  CAS  Google Scholar 

  • Lu, M., and Shenk, T. (1999). Human cytomegalovirus UL69 protein induces cells to accumulate in Gt phase of the cell cycle. J. Virol. 73, 676–683.

    PubMed  CAS  Google Scholar 

  • Luo, R. X., Postigo, A. A., and Dean, D. C. (1998). Rb interacts with histone deacetylase to repress transcription. Cell 92, 463–473.

    Article  PubMed  CAS  Google Scholar 

  • Mach, M., Kropff, B., Dal Monte, P., and Britt, W. (2000). Complex formation by human cytomegalovirus glycoproteins M (gpUL100) and N (gpUL73). J. Virol. 74, 11881–11892.

    Article  PubMed  CAS  Google Scholar 

  • Magnaghi-Jaulin, L., Groisman, R., Naguibneva, I., Robin, P., Lorain, S., Le Villain, J. P., Troalen, F., Trouche, D., and Harel-Bellan, A. (1998). Retinoblastoma protein represses transcription by recruiting a histone deacetylase. Nature 391, 601–604.

    PubMed  CAS  Google Scholar 

  • Margolis, M. J., Pajovic, S., Wong, E. L., Wade, M., Jupp, R., Nelson, J. A., and Azizkhan, J. C. (1995). Interaction of the 72-kilodalton human cytomegalvirus IE1 gene product with E2F1 coincides with E2F-dependent activation of dihydrofolate reductase transcription. J. Virol. 69, 7759–7767.

    PubMed  CAS  Google Scholar 

  • Massague, J. (1990). The transforming growth factor-beta family. Annu. Rev. Cell Biol. 6, 597–641.

    Article  PubMed  CAS  Google Scholar 

  • Meier, J. L., and Stinski, M. F. (1996). Regulation of human cytomegalovirus immediate-early gene expression. Intervirology 39, 331–342.

    PubMed  CAS  Google Scholar 

  • Melnick, J. L., Adam, E., and Debakey, M. E. (1993). Cytomegalovirus and atherosclerosis. Eur. Heart J. 14, 30–38.

    PubMed  Google Scholar 

  • Melnick, J. L., Hu, C., Burek, J., Adam, E., and DeBakey, M. E. (1994). Cytomegalovirus DNA in arterial walls of patients with atherosclerosis. J. Med. Virol. 42, 170–174.

    PubMed  CAS  Google Scholar 

  • Michelson, S., Alcami, J., Kim, S.-J., Danielpour, D., Licard, L., Bessia, C., Paya, C., and Virelizier, J.-L. (1994). Human cytomegalovirus infection induces production of transforming growth factor beta 1. J. Virol. 68, 5730–5737.

    PubMed  CAS  Google Scholar 

  • Michelson, S., Turowski, P., Picard, L., Goris, J., Landini, M. P., Topilko, A., Hemmings, B., Bessia, C., Garcia, A., and Virelizier, J. L. (1996). Human cytomegalovirus carries serine/threonine protein phosphatases PP1 and a host-cell drived PP2A. J. Virol. 70, 1415–1423.

    PubMed  CAS  Google Scholar 

  • Mocarski, E. S., Kemble, G. Lyle, J., Greaves, R. F. (1996). A deletion mutant in the human cytomegalovirus gene encoding IE1 491aa is replication defective due to a failure in autoregulation. Proc. Natl. Acad. Sci. USA 93, 11321–11326.

    Article  PubMed  CAS  Google Scholar 

  • Muganda, P., Mendoza, O., Hernandez, J., and Qian, Q. (1994). Human cytomegalovirus elevates levels of the cellular protein p53 in infected fibroblasts. J. Virol. 68, 8028–8034.

    PubMed  CAS  Google Scholar 

  • Muller, S., and Dejean, A. (1999). Viral immediate-early proteins abrogate the modification by SUMO-1 of PML and Sp100 proteins correlating with nuclear body disruption. J. Virol. 73, 5139–5143.

    Google Scholar 

  • Murphy, E. A., Streblow, D. N., Nelson, J. A., and Stinski, M. F. (2000). The human cytomegalovirus IE86 protein can block cell cycle progression after inducing transition into the S-phase of permissive cells. J. Virol. 74, 7108–7118.

    PubMed  CAS  Google Scholar 

  • Navarro, L., Mowen, K., Rodems, S., Weaver, B., Reich, N., Spector, D., and David, M. (1998). Cytomegalovirus activates interferon immediate-early response gene expression and an interferon regulatory factor 3-containing interferon-stimulated response element-binding complex. Mol. Cell. Biol. 18, 3796–3802.

    PubMed  CAS  Google Scholar 

  • Nevins, J. R. (1992). E2F: a link between the Rb tumor suppressor and viral oncoproteins. Science 258, 424–429.

    PubMed  CAS  Google Scholar 

  • Pajovic, S., Wong, E. L., Black, A. R., and Azizkhan, J. C. (1997). Identification of a viral kinase that phosphorylates specific E2Fs and pocket proteins. Mol. and Cell. Biol. 17, 6459–6464.

    CAS  Google Scholar 

  • Persoons, M. C. J., Daemen, M. J. A. P., Bruning, J. H., and Bruggeman, C. A. (1994). Active cytomegalovirus infection of arterial smooth muscle cells in immunocompromised rats: a clue to herpesvirus-associated atherogenesis? Cric. Res. 72, 214–220.

    Google Scholar 

  • Poma, E. E., Kowalik, T. F., Zhu, L., Sinclair, J. H., and Huang, E.-S. (1996). The human cytomegalovirus IE1-72 protein interacts with the cellular p107 protein and relieves p107-mediated transcriptional repression of an E2F-responsive promoter. J. Virol. 70, 7867–7877.

    PubMed  CAS  Google Scholar 

  • Rice, G. P. A., Schrier, R. D., and Oldstone, M. B. A. (1984). Cytomegalovirus infects human lymphocytes and monocytes: virus expression is restricted to immediate-early gene products. Proc. Natl. Acad. Sci. USA 81, 6134–6138.

    PubMed  CAS  Google Scholar 

  • Rodems, S. M., Clark, C. L., and Spector, D. H. (1998). Separate DNA elements containing ATF/CREB and IE86 binding sites differentially regulate the human cytomegalovirus UL112-113 promoter at early and late times in the infection. J. Virol. 72, 2697–2707.

    PubMed  CAS  Google Scholar 

  • Rodems, S. M., and Spector, D. H. (1998). Extracellular signal-regulated kinase activity is sustained early during human cytomegalovirus infection. J. Virol. 72, 9173–9180.

    PubMed  CAS  Google Scholar 

  • Salvant, B. S., Fortunato, E. A., and Spector, D. H. (1998). Cell cycle dysregulation by human cytomegalovirus: Influence of the cell cycle phase at the time of infection and effects on cyclin transcription. J. Virol. 72, 3729–3741.

    PubMed  CAS  Google Scholar 

  • Sinclair, J., Baillie, J., Bryant, L., and Caswell, R. (2000). Human cytomegalovirus mediates cell cycle progression through G1 into early S phase in terminally differentiated cells. J. Gen. Virol. 81, 1553–1565.

    PubMed  CAS  Google Scholar 

  • Slobedman, B., and Mocarski, E. S. (1999). Quantitative analysis of latent human cytomegalovirus. J. Virol. 73, 4806–4812.

    PubMed  CAS  Google Scholar 

  • Soderberg-Naucler, C., Fish, K. N., and Nelson, J. A. (1997a). Interferon-gamma and tumor necrosis factor-alpha specifically induce formation of cytomegalovirus-permissive monocyte-derived macrophages that are refractory to the antiviral activity of these cytokines. J. Clin. Invest. 100, 3154–3163.

    Article  PubMed  CAS  Google Scholar 

  • Soderberg-Naucler, C., Fish, K. N., and Nelson, J. A. (1997b). Reactivation of latent human cytomegalovirus by allogeneic stimulation of blood cells from healthy donors. Cell 91, 119–126.

    PubMed  CAS  Google Scholar 

  • Sommer, M. H., Scully, A. L., and Spector, D. H. (1994). Transactivation by the human cytomegalovirus IE2 86-kilodalton protein requires a domain that binds to both the TATA box-binding protein and the retinoblastoma protein. J. Virol. 68, 6223–6231.

    PubMed  CAS  Google Scholar 

  • Song, Y.-J., and Stinski, M. F. (2001). Effect of the human cytomegalovirus IE86 protein on expression of cellular genes that regulate the cell cycle, biosynthetic enzymes for DNA synthesis, and the initiation of DNA synthesis: A gene microarray analysis. (Manuscript in preparation).

    Google Scholar 

  • Span, A. H. M., Grauls, G., Bosman, F., Van Boven, C. P. A., and Bruggeman, C. A. (1992). Cytomegalovirus infection induces vascular injury in the rat. Atherosclerosis 93, 41–52.

    Article  PubMed  CAS  Google Scholar 

  • Spector, D. H. (1996). Activation and regulation of human cytomegalovirus early genes. Intervirology 39, 361–377.

    PubMed  CAS  Google Scholar 

  • Speir, E., Modali, R., Huang, E.-S., Leon, M. B., Shawl, F., Finkel, T., and Epstein, S. E. (1994). Potential role of human cytomegalovirus and p53 interaction in coronary restenosis. Science 265, 391–394.

    PubMed  CAS  Google Scholar 

  • Stenberg, R. M. (1996). The human cytomegalovirus major immediate-early gene. Intervirology 39, 343–349.

    PubMed  CAS  Google Scholar 

  • Stinski, M. F. (1978). Sequence of protein synthesis in cells infected by human cytomegalovirus: early and late virus-induced polypeptides. J. Virol. 26, 686–701.

    PubMed  CAS  Google Scholar 

  • Stinski, M. F. (1999). Cytomegalovirus promoter for expression in mammalian cells. In Gene Expression Systems: Using Nature for the Art of Expression, eds. J. M. Ferandez and J. P. Hoeffler, Academic Press, San Diego, CA, 211–233.

    Google Scholar 

  • Streblow, D. N., Soderberg-Naucler, C., Vieiera, J., Smith, P., Wakabayashi, E., Ruchti, F., Mattison, K., Altschulaer, Y., and Nelson, J. A. (1999). The human cytomegalovirus chemokine receptor US28 mediates vascular smooth muscle cell migration. Cell 99, 511–520.

    Article  PubMed  CAS  Google Scholar 

  • Taylor-Wiedeman, J., Sissons, J. G., Borysiewicz, L. K., and Sinclair, J. H. (1991). Monocytes are a major site of persistence of human cytomegalovirus in peripheral blood mononuclear cells. J. Gen. Virol. 72, 2059–2064.

    Article  PubMed  CAS  Google Scholar 

  • Trouche, D., and Kouzarides, T. (1996). E2F1 and El A 12S have a homologous activation domain regulated by Rb and CBP. Proc. Natl. Acad. Sci. 93, 11268–11273.

    Article  Google Scholar 

  • Tsai, H. L., Kou, G. H., Chen, S. C., Wu, C. W., and Lin, Y. S. (1996). Human cytomegalovirus immediate-early protein IE2 tethers a transcriptional repression domain to p53. J. Biol. Chem. 271, 3534–3540.

    PubMed  CAS  Google Scholar 

  • Weibusch, L., and Hagemeier, C. (2001). The human cytomegalovirus immediate early 2 protein dissociates cellular DNA synthesis from cyclin-dependent kinase activation. EMBO J. 20, 1086–1098.

    Google Scholar 

  • Weibusch, L., and Hagemeier, C. (1999). Human cytomegalovirus 86-kilodalton IE2 protein blocks cell cycle progression in G1. J. Virol. 73, 9274–9283.

    Google Scholar 

  • Weinberg, R. (1995). The retinoblastoma and cell cycle control. Cell 81, 323–330.

    Article  PubMed  CAS  Google Scholar 

  • Wilkinson, G. W., Kelly, C., Sinclair, J. H., and Richards, C. (1998). Disruption of PML-associated nuclear bodies mediated by the human cytomegalovirus major immediate early gene product. J. Gen. Virol. 79, 1233–1245.

    PubMed  CAS  Google Scholar 

  • Winkler, M., Rice, S. A., and Stamminger, T. (1994). UL69 of human cytomegalovirus, an open reading frame with homology to ICP27 of herpes simplex virus, encodes a transactivator of gene expression. J. Virol. 68, 3943–3954.

    PubMed  CAS  Google Scholar 

  • Xu, Y., Ahn, J.-H., Jang, W.-J., and Hayward, G. S. (2000). Covalent modification of human cytomegalovirus major immediate-early proteins IE1 and IE2 by small ubiquitin-related modifiers. 25th International Herpesvirus Workshop, Portland, OR.

    Google Scholar 

  • Yoo, Y. D., Chiou, C.-J., Choi, K. S., Yi, Y., Michelson, S., Kim, S., Hayward, G. S., and Kim, S.-J. (1996). The IE2 regulatory protein of human cytomegalovirus induces expression of the human transforming growth factor beta 1 gene through an Egr-1 binding site. J. Virol. 70, 7062–7070.

    PubMed  CAS  Google Scholar 

  • Yurochko, A. D., Hwang, E.-S., Rasmussen, L., Keay, S., Pereira, L., and Huang, E.-S. (1997). The human cytomegalovirus UL55 (gB) and UL75 (gH) glycoprotein ligands initiate the rapid activation of Sp1 and NF-kB during infection. J. Virol. 71, 5051–5059.

    PubMed  CAS  Google Scholar 

  • Yurochko, A. D., Kowalik, T. F., Huong, S. M., and Huang, E. S. (1995). Human cytomegalovirus upregulates NF-kappa B activity by transactivating the NF-kappa B p105/p50 and p65 promoters. J. Virol. 69, 5391–5400.

    PubMed  CAS  Google Scholar 

  • Zhu, H., Cong, J.-P., Mamtora, G., Gingeras, T., and Shenk, T. (1998). Cellular gene expression altered by human cytomegalovirus: Global monitoring with oligonucleotide arrays. Proc. Natl. Acad. Sci. USA 95, 14470–14475.

    PubMed  CAS  Google Scholar 

  • Zhu, H., Cong, J. P., and Shenk, T. (1997). Use of differential display analysis to assess the effect of human cytomegalovirus infection on the accumulation of cellular RNAs: Induction of interferon-responsive RNAs. Proc. Natl. Acad. Sci. U.S.A. 94, 13985–13990.

    PubMed  CAS  Google Scholar 

  • Zhu, H., Shen, Y., and Shenk, T. (1995). Human cytomegalovirus IE1 and IE2 proteins block apoptosis. J. Virol. 69, 7960–7970.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Kluwer Academic Publishers

About this chapter

Cite this chapter

Stinski, M.F., Song, YJ. (2002). Regulation of Cellular Genes by Cytomegalovirus. In: Holzenburg, A., Bogner, E. (eds) Structure-Function Relationships of Human Pathogenic Viruses. Springer, Boston, MA. https://doi.org/10.1007/0-306-47650-9_16

Download citation

  • DOI: https://doi.org/10.1007/0-306-47650-9_16

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-306-46768-4

  • Online ISBN: 978-0-306-47650-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics