Advertisement

Global Optimisation of Chemical Process Flowsheets

  • I. D. L. BogleEmail author
  • R. P. Byrne
Chapter
Part of the Nonconvex Optimization and Its Applications book series (NOIA, volume 59)

Abstract

Some chemical process design systems include a numerical optimisation capability and this is increasingly being demanded. The incorporation of interval based global optimisation in modular based systems which dominate the market is difficult because of the way modules are used as black boxes. In this paper a way of implementing global optimisation by recasting the models in a generic way is discussed. Two interval based algorithms are presented with results on two simple process optimisation problems giving an idea of the price that may need to be paid for the convenience of the modular systems. The two interval algorithms are based on reformulating the problem to be able to provide tighter estimates for the lower bounds on convex nonlinearities.

Keywords

Interval based global optimisation chemical process flowsheets interval algorithms 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliography

  1. [1]
    Edgar, T. F. and Himmelblau, D. M.: Optimization of Chemical Processes, Chemical Engineering Series. McGraw-Hill International. New York, 1988.Google Scholar
  2. [2]
    Krotschek, C. and Narodoslawsky, M.: The sustainable process index. A new dimension in ecological evaluation. Ecological Engineering 6(4) (1996). 241.Google Scholar
  3. [3]
    Pistikopoulos, E. N., Stefanis, S. K. and Livingston, A. G.: A methodology for minimum environmental impact analysis, American Institute of Chemical Engineers Symposium Series 90(303) (1994), 139–150.Google Scholar
  4. [4]
    Steffens, M. A., Fraga, E. S. and Bogle, I. D. L.: Multicriteria process synthesis for generating sustainable and economic bioprocesses, Comput. Chem. Engng. 23 (1999), 1455–1467.CrossRefGoogle Scholar
  5. [5]
    Kallrath, J.: Mixed integer optimization in the chemical process industry: Experience, potential and future perspectives, Trans. I Chem E 78(Part A) (2000), 809–822.CrossRefGoogle Scholar
  6. [6]
    Biegler, L. T.: Simultaneous modular simulation and optimization. In: Foundations of Computer-Aided Process Design, Proceedings of the Second International Conference held at Snowmass, Colorado, 1983.Google Scholar
  7. [7]
    Perkins, J. D.: Equation oriented flowsheeting, In: Foundations of Computer Aided Process Design, Proceedings of the Second International Conference held at Snowmass, Colorado, 1983.Google Scholar
  8. [8]
    Grossmann, I. E. (ed.): Global Optimization in Engineering Design, Kluwer Acad. Publ., Dordrecht, 1996.zbMATHGoogle Scholar
  9. [9]
    Floudas, C. A.: Recent advances in global optimization for process synthesis, design and control: Enclosure of all solutions. Computers Chem. Engng. 23(Suppl) (1999), S963–S973.Google Scholar
  10. [10]
    Adjiman, C. S., Androulakis, I. P., Maranas, C. D. and Floudas, C. A.: A global optimisation method, αBB, for process design, Computers Chem. Engng. 20S (1996), S419–S424.Google Scholar
  11. [11]
    Vaidyanathan, R. and El-Halwagi, M.: Global optimisation of nonconvex programs via interval analysis, Comput. Chem. Engng. 18 (1994), 889.CrossRefGoogle Scholar
  12. [12]
    Smith, E. M. B. and Pantelides, C. C.: Global optimisation of general process models, In: I. E. Grossmann (ed.), Global Optimisation for Engineering Design, Kluwer Acad. Publ., Dordrecht, 1996, pp. 356–386.Google Scholar
  13. [13]
    Kocis, G. R. and Grossmann, I. E.: Global optimization of nonconvex mixed-integer nonlinear-programming (MINLP) problems in process synthesis, Ind. Eng. Chem. Res. 27(8) (1991), 1407–1421.Google Scholar
  14. [14]
    Androulakis, I. P. and Venkatsubramanian, V.: A genetic algorithmic framework for process design and optimization, Computers Chem. Engng. 15(4) (1991), 217–228.Google Scholar
  15. [15]
    Byrne, R. P. and Bogle, I. D. L.: Global optimisation of constraiuned non-convex programs using reformulation and interval analysis, Computers Chem. Engng. 23 (1999), 1341–1350.Google Scholar
  16. [16]
    Garrard, A. and Fraga, E. S.: Mass exchange network synthesis using genetic algorithms, Computers Chem. Eng. 22(12) (1998), 1837–1850.CrossRefGoogle Scholar
  17. [17]
    Quesada, I. and Grossmann, I. E.: Global optimization algorithm for heat-exchanger networks, Ind. Eng. Chem. Res. 32(3) (1993), 487–99.CrossRefGoogle Scholar
  18. [18]
    Quesada, I. and Grossmann, I. E.: Global optimization of bilinear process networks with multicomponent flows, Comput. Chem. Engng. 19(12) (1995), 1219–1242.CrossRefGoogle Scholar
  19. [19]
    Moore, R. E.: Interval Analysis, Prentice-Hall, Englewood Cliffs, NJ, 1966.zbMATHGoogle Scholar
  20. [20]
    Hansen, E.: Global Optimization Using Interval Analysis, Marcel Dekker, New York, 1992.zbMATHGoogle Scholar
  21. [21]
    Ratschek, H. and Rockne, J.: New Computer Methods for Global Optimization, Ellis Horwood Ltd., Chichester, West Sussex, England, 1988.zbMATHGoogle Scholar
  22. [22]
    Ryoo, H. S. and Sahinidis, N. V.: Global optimization of nonconvex NLPs and MINLPs with applications in process design, Computers Chem. Engng. 19(5) (1995), 551–566.Google Scholar
  23. [23]
    Hansen, P., Jaumard, B. and Lu, S. H.: An analytical approach to global optimization, Math. Programming 52 (1991), 227–254.MathSciNetzbMATHGoogle Scholar
  24. [24]
    McCormick, G. P.: Computability of global solutions to factorable nonconvex programs: Part 1 — Convex underestimating problems, Math. Programming 10 (1976), 147–175.CrossRefMathSciNetzbMATHGoogle Scholar
  25. [25]
    Rall, L. B.: Automatic Differentiation: Techniques and Applications, Lecture Notes in Comput. Sci., Springer-Verlag, Berlin, 1981.Google Scholar
  26. [26]
    Byrne, R. P. and Bogle, I. D. L.: Global optimization of modular process flowsheets, Ind. Eng. Chem. Res. 39 (2000), 4296–4301.CrossRefGoogle Scholar
  27. [27]
    Byrne, R. P. and Bogle, I. D. L.: Global optimisation using interval analysis, In: I. E. Grossmann (ed.), Global Optimisation for Engineering Design, Kluwer Acad. Publ., Dordrecht, 1996, pp. 155–174.Google Scholar
  28. [28]
    Floudas, C. A.: Nonlinear and Mixed-Integer Optimisation. Fundamentals and Applications, Oxford University Press, New York, 1995.Google Scholar
  29. [29]
    Vaidyanathan, R. and El-Halwagi, M.: Global optimisation of MINLPs by interval analysis, In: I. E. Grossmann (ed.), Global Optimisation for Engineering Design, Kluwer Acad. Publ., Dordrecht, 1996, pp. 175–195.Google Scholar

Copyright information

© Kluwer Academic Publishers 2002

Authors and Affiliations

  1. 1.Centre for Process Systems Engineering Department of Chemical EngineeringUniversity College LondonLondonUK

Personalised recommendations