The Structure of Multivariate Models and the Range of Definition

  • Vydūnas Šaltenis
  • Vytautas Tiešis
Part of the Nonconvex Optimization and Its Applications book series (NOIA, volume 59)


The paper deals with a decomposition of a multivariate function into the summands of different dimensionality. The proposed methods of structure analysis enable to approximate the multidimensional function (the objective function in optimisation) by the functions of fewer variables. It is shown that step by step partition of the range of definition may be used to reduce the interactions of variables in the parts.


Decomposition structure analysis approximation optimisation 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Simon, H. A. and Ando, A.: Aggregation of variables in dynamic systems, Econometrica 29 (1964), 111–138.Google Scholar
  2. [2]
    Courtois, P.-J.: Decomposability, Academic Press, New York, 1977.Google Scholar
  3. [3]
    Courtois, P.-J.: On time and space decomposition of complex structures, Comm. ACM 28(6) (1985), 590–603.CrossRefGoogle Scholar
  4. [4]
    Cukier, R. I., Levine, H. B. and Shuler, K. E.: Nonlinear sensitivity analysis of multiparameter model systems, J. Comput. Phys. 26(1) (1978), 1–42.CrossRefMathSciNetGoogle Scholar
  5. [5]
    Šaltenis, V.: Structure Analysis of Optimisation Problems, Mokslas, Vilnius, 1989, 123 p. (in Russian).Google Scholar
  6. [6]
    Soboľ, I. M.: On sensitivity estimation for nonlinear mathematical models, Mat. Mod. 2(1) (1990), 112–118 (in Russian).Google Scholar
  7. [7]
    Soboľ, I. M.: Global sensitivity indices for nonlinear mathematical models and their Monte Carlo estimates, Math. Comput. Simulation 55 (2001), 271–280.MathSciNetGoogle Scholar
  8. [8]
    Golomb, M.: Approximation by functions of fewer variables, In: On Numerical Approximation. Proceedings of a Symposium, Conducted by the Mathematics Research Centre, R. E. Langer (ed.), The University of Wisconsin Press, Madison, 1959, pp. 275–327.Google Scholar
  9. [9]
    Šaltenis, V.: Analysis of multivariate function structure in classification problems, Informatica 7(4) (1996), 525–541.Google Scholar
  10. [10]
    Šaltenis, V.: Grid with uniformity adapted to the structure of a multidimensional problem, Informatica 8(4) (1997), 583–598.MathSciNetGoogle Scholar
  11. [11]
    Šaltenis, V.: Global sensitivity analysis of infection spread, radar search and multiple criteria decision models, Informatica 9(2) (1998), 235–252.Google Scholar
  12. [12]
    Dixon, L. C. W. and Cziego, G. P.: The Global Optimisation Problem: An Introduction, Towards Global Optimisation 2, North-Holland, Amsterdam, 1978, pp. 1–15.Google Scholar

Copyright information

© Kluwer Academic Publishers 2002

Authors and Affiliations

  • Vydūnas Šaltenis
    • 1
  • Vytautas Tiešis
    • 1
  1. 1.Institute of Mathematics and InformaticsVilniusLithuania

Personalised recommendations