Advertisement

The Molecular Biology and Metabolism of Glutathione

  • Christine H. Foyer
  • Graham Noctor
Part of the Plant Ecophysiology book series (KLEC, volume 2)

Keywords

Salicylic Acid Glutathione Reductase Glutathione Content Brassica Juncea Glutathione Synthesis 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alfenito M.R., Souer E., Goodman C.D., Buell R., Mol J., Koes R., Walbot V. 1998. Functional complementation of anthocyanin sequestration in the vacuole by widely divergent glutathione S-transferases.-Plant Cell 10: 1135–1149.PubMedCrossRefGoogle Scholar
  2. Amory A.M., Ford L., Pammenter N.W., Cresswell C.F. 1992. The use of 3-amino-l,2,4-triazole to investigate the short-term effects of oxygen toxicity on carbon assimilation by Pisum sativum seedlings.-Plant Cell. Environ. 15: 655–663.Google Scholar
  3. Aono M., Kubo A., Saji H., Tanaka K., Kondo N. 1993. Enhanced tolerance to photooxidative stress of transgenic Nicotiana tabacum with high chloroplastic glutathione reductase activity.-Plant Cell. Physiol. 34: 129–135.Google Scholar
  4. Arisi A.-C.M., Noctor G., Foyer CH., Jouanin L. 1997. Modification of thiol contents in poplars (Populus tremula x P. alba) over-expressing enzymes involved in glutathione biosynthesis.-Planta 203: 362–372.PubMedCrossRefGoogle Scholar
  5. Arisi A.C.M., Mocquot B., Lagriffoul A., Mench M., Foyer CH., Jouanin L. 2000. Responses to cadmium in leaves of transformed poplars overexpressing γ-glutamylcysteine synthetase.-Physiol. Plant. (submitted).Google Scholar
  6. Baier M., Dietz K.-J. 1997. The plant 2-Cys peroxiredoxin BAS1 is a nuclear-encoded chlorplast protein: its expressional regulation, phylogenetic origin, and implications for its specific physiological function in plants.-Plant J. 12: 179–190.PubMedCrossRefGoogle Scholar
  7. Bandyopadhyay S., Starke D.W., Mieyal J.J., Gronostajski R.M. 1998. Thioltransferase (glutaredoxin) reactivates the DNA-binding activity of oxidation-inactivated nuclear factor 1.-J. Biol. Chem. 273: 392–397.PubMedGoogle Scholar
  8. Bartling D., Radzio R., Steiner U., Weiler E.W. 1993. A glutathione-S-transferase with glutathione peroxidase activity from Arabidopsis thaliana-molecular cloning and functional characterization.-Eur. J. Biochem. 216: 579–586.PubMedCrossRefGoogle Scholar
  9. Besson V., Neuburger M., Rebeille F., Douce R. 1995. Evidence for three serine hydroxy-methyltransferases in green leaf cells. Purification and characterization of the mitochondrial and chloroplastic isoforms.-Plant Physiol. Biochem. 33: 665–673.Google Scholar
  10. Bielawski W., Joy K.W. 1986. Reduced and oxidised glutathione and glutathione reductase activity in tissues of Pisum sativum.-Planta 169: 267–272.CrossRefGoogle Scholar
  11. Brisson L.F., Zelitch I., Havir E.A. 1998. Manipulation of catalase levels produces altered photosynthesis in transgenic tobacco plants.-Plant Physiol. 116: 259–269.PubMedCrossRefGoogle Scholar
  12. Broadbent P., Creissen G.P., Kular B., Wellburn A.R., Mullineaux P. 1995. Oxidative stress responses in transgenic tobacco containing altered levels of glutathione reductase activity.-Plant J. 8: 247–255.CrossRefGoogle Scholar
  13. Bunkelmann J.R., Trelease R.N. 1996. Ascorbate peroxidase. A prominent membrane protein in oilseed glyoxysomes.-Plant Physiol. 110: 589–598.PubMedCrossRefGoogle Scholar
  14. Burgener M., Suter M., Jones S., Brunold C. 1998. Cyst(e)ine is the transport metabolite of assimilated sulfur from bundle-sheath to mesophyll cells in maize leaves.-Plant Physiol. 116: 315–1322.CrossRefGoogle Scholar
  15. Butt A.D., Ohlrogge J.B. 1991. Acyl carrier protein is conjugated to glutathione in spinach seed.-Plant Physiol. 96: 937–942.PubMedGoogle Scholar
  16. Buwalda F., De Kok L., Stulen I., Kuiper P.J.C. 1988. Cysteine, γ-glutamylcysteine and glutathione contents of spinach leaves as affected by darkness and application of excess sulfur.-Physiol. Plant. 80: 196–204.Google Scholar
  17. Buwalda F., Stulen I., De Kok L.J., Duiper P.J.C. 1990. Cysteine, γ-glutamylcysteine and glutathione contents of spinach leaves as affected by darkness and application of excess sulfur. II. Glutathione accumulation in detached leaves exposed to H 2 S in the absence of light is stimulated by the supply of glycine to the petiole.-Physiol. Plant. 80: 196–204.CrossRefGoogle Scholar
  18. Chamnongpol S., Willekens H., Langebartels C., Van Montagu M., Inzé D., Van Camp W. 1996. Transgenic tobacco with a reduced catalase activity develops necrotic lesions and induces pathogenesis-related expression under high light.-Plant J. 10: 491–503.CrossRefGoogle Scholar
  19. Chamnongpol S., Willekens H., Moeder W., Langebartels C., Sandermann H., Van Montagu M., Inzé D., Van Camp W. 1998. Defense activation and enhanced pathogen tolerance induced by H 2 O 2 in transgenic tobacco.-Proc. Natl. Acad. Sci. USA 95: 5818–5823.PubMedCrossRefGoogle Scholar
  20. Chen J., Goldsbrough P.B. 1994. Increased activity of γ-glutamylcysteine synthetase in tomato cells selected for cadmium tolerance.-Plant Physiol. 106: 233–239.PubMedGoogle Scholar
  21. Chen W., Chao G., Singh K.B. 1996. The promoter of a H 2 O 2-inducible, Arabidopsis glutathione-S-transferase gene contains closely linked OBF-and OBP1-binding sites.-Plant J. 10: 955–966.PubMedCrossRefGoogle Scholar
  22. Choudhary A.D., Lamb C.J., Dixon R.A. 1990. Stress responses in Alfalfa (Medicago sativa L.) VI. Differential responsiveness of chalcone synthase induction to fungal elicitor or glutathione in electroporated protoplasts.-Plant Physiol. 94: 1802–1807.PubMedGoogle Scholar
  23. Cobbett C.S., May M.J., Howden R., Rolls B. 1998. The glutathione-deficient, cadmium-sensitive mutant, cad2-1, of Arabidopsis thaliana is deficient in γ-glutamylcysteine synthetase.-Plant J. 16: 73–78.PubMedCrossRefGoogle Scholar
  24. Creissen G., Edwards E.A., Enard C., Wellburn A., Mullineaux P. 1992. Molecular characterisation of glutathione reductase cDNAs from pea (Pisum sativum L.).-Plant J. 2: 129–131.PubMedGoogle Scholar
  25. Creissen G.P., Mullineaux P.M. 1995. Cloning and characterization of glutathione reductase cDNAs and identification of two genes encoding the tobacco enzyme.-Planta 197: 422–425.PubMedCrossRefGoogle Scholar
  26. Creissen G., Reynolds H., Xue Y.B., Mullineaux P. 1995. Simultaneous targeting of pea glutathione reductase and of a bacterial fusion protein to chloroplasts and mito-chondria.-Plant J. 8: 167–175.PubMedCrossRefGoogle Scholar
  27. Creissen G., Firmin J., Fryer M., Kular B., Leyland N., Reynolds H., Pastori G., Wellburn F., Baker N., Wellburn A., Mullineaux P. 1999. Elevated glutathione biosynthetic capacity in the chloroplasts of transgenic tobacco plants paradoxically causes increased oxidative stress.-Plant Cell 11: 1277–1291.PubMedCrossRefGoogle Scholar
  28. Cummins I., Cole D.J., Edwards R. 1999. A role for glutathione transferases functioning as glutathione peroxidases in resistance to multiple herbicides in black grass.-Plant J. 18: 285–292.PubMedCrossRefGoogle Scholar
  29. Dafré A.L., Sies H., Akerboom T. 1996. Protein S-thiolation and regulation of microsomal glutathione transferase activity by the glutathione redox couple.-Arch. Biochem. Biophys. 332: 288–294.PubMedGoogle Scholar
  30. Delledonne M., Xia Y., Dixon R.A.; Lamb C. 1998. Nitric oxide functions as a signal in plant disease resistance.-Nature 394: 585–588.PubMedGoogle Scholar
  31. Demple B. 1998. Signal transduction-a bridge to control.-Science 279: 1655–1656.PubMedCrossRefGoogle Scholar
  32. Doulis A.G., Debian N., Kingston-Smith A.H., Foyer CH. 1997. Differential localization of antioxidants in maize leaves.-Plant Physiol. 114: 1031–1037.PubMedGoogle Scholar
  33. Dron M., Clouse S.D., Dixon R.A., Lawton M.A., Lamb C.J. 1988. Glutathione and fungal elicitor regulation of a plant defense gene promoter in electroporated protoplasts.-Proc. Natl. Acad. Sci. USA 85: 6738–6742.PubMedGoogle Scholar
  34. Du H., Klessig D.F. 1997. Role for salicylic acid in the activation of defense responses in catalase-deficient transgenic tobacco.-Mol. Plant-Microbe Interact. 10: 922–925.Google Scholar
  35. Edwards E.A., Rawsthorne S., Mullineaux P.M. 1990. Subcellular distribution of multiple forms of glutathione reductase in pea (Pisum sativum L.).-Planta 180: 278–284.CrossRefGoogle Scholar
  36. Edwards R., Blount J.W., Dixon R.A. 1991. Glutathione and elicitation of the phytaolexin response in legume cultures.-Planta 184: 403–409.CrossRefGoogle Scholar
  37. Eshdat Y., Holland D., Faltin Z., Ben-Hayyim G. 1997. Plant glutathione peroxidases.-Physiol. Plant. 100: 234–240.CrossRefGoogle Scholar
  38. Feierabend J., Engel S. 1986. Photoinactivation of catalase in vitro and in leaves.-Arch. Biochem. Biophys. 251: 567–576.PubMedCrossRefGoogle Scholar
  39. Fordham-Skelton A.P., Skipsey M., Evans I.M., Edwards R., Gatehouse J.A. 1999. Higher plant tyrosine-specific phosphatases (PTPs) contain novel amino-terminal domains: expression during embryogenesis.-Plant Mol. Biol. 39: 593–605.PubMedCrossRefGoogle Scholar
  40. Foyer Ch., Halliwell B. 1976. The presence of glutathione and glutathione reductase in chloroplasts: a proposed role in ascorbic acid metabolism.-Planta 133: 21–25.CrossRefGoogle Scholar
  41. Foyer Ch., Lelandais M., Galap C., Kunert K.-J. 1991. Effects of elevated cytosolic glutathione reductase activity on the cellular glutathione pool and photosynthesis in leaves under normal and stress conditions.-Plant Physiol. 97: 863–872.PubMedGoogle Scholar
  42. Foyer Ch., Souriau N., Perret S., Lelandais M., Kunert K.J., Pruvost C., Jouanin L. 1995. Overexpression of glutathione reductase but not glutathione synthetase leads to increases in antioxidant capacity and resistance to photoinhibition in poplar trees.-Plant Physiol. 109: 1047–1057.PubMedCrossRefGoogle Scholar
  43. Foyer Ch., Lopez-Delgado H., Dat J.F., Scott I.M. 1997. Hydrogen peroxide-and glutathione-associated mechanisms of acclimatory stress tolerance and signalling.-Physiol. Plant. 100: 241–254.CrossRefGoogle Scholar
  44. Foyer Ch., Mullineaux P.M. 1998. The presence of dehydroascorbate and dehydroascorbate reductase in plant tissues.-FEBS Lett. 425: 528–529.PubMedCrossRefGoogle Scholar
  45. Foyer Ch., Noctor G. 2000. Oxygen processing in photosynthesis: regulation and signalling.-New Phytol. 146: 359–388.CrossRefGoogle Scholar
  46. Frendo P., Gallesi D., Turnbull R., Van de Sype G., Hérouart D., Puppo A. 1999. Localisation of glutathione and homoglutathione in Medicago truncatula is correlated to a differential expression of genes involved in their synthesis.-Plant J. 17: 215–219.CrossRefGoogle Scholar
  47. Godwin A.K., Meister A., O’Dwyer P.J., Huang C.S., Hamilton T.C., Anderson M.E. 1992. High resistance to cisplatin in human ovarian cancer cell lines is associated with marked increase of glutathione synthesis.-Proc. Natl. Acad. Sci. USA 89: 3070–3074.PubMedGoogle Scholar
  48. Halliwell B., Foyer CH. 1978. Properties and physiological function of a glutathione reductase purified from spinach leaves by affinity chromatography.-Planta 139: 9–17.CrossRefGoogle Scholar
  49. Hell R., Bergmann L. 1988. Glutathione synthetase in tobacco suspension cultures: catalytic properties and localisation.-Physiol. Plant 72: 70–76.Google Scholar
  50. Hell R., Bergmann L. 1990.γ-Glutamylcysteine synthetase in higher plants: catalytic properties and subcellular localisation.-Planta 180: 603–312.Google Scholar
  51. Heo J., Holbrook G.P. 1999. Regulation of 2-carboxy-D-arabinitol 1-phosphate phosphatase: activation by glutathione and interaction with thiol reagents.-Biochem. J. 338: 409–416.PubMedCrossRefGoogle Scholar
  52. Hérouart D., Van Montagu M., Inzé D. 1993. Redox-activated expression of the cytosolic copper/zinc superoxide dismutase gene in Nicotiana.-Proc. Natl. Acad. Sci. USA 90: 3108–3112.PubMedGoogle Scholar
  53. Hertwig B., Streb P., Feirerabend J. 1992. Light dependence of catalase synthesis and degradation in leaves and the influence of interfering stress conditions.-Plant Physiol. 100: 1547–1553.PubMedGoogle Scholar
  54. Huang C.S., Chang L.S., Anderson M.E., Meister A. 1993. Catalytic and regulatiory properties of the heavy subunit of rat kidney γ-glutamylcysteine synthetase.-J. Biol. Chem. 268: 19675–19680.PubMedGoogle Scholar
  55. Ireland R.J., Hiltz D.A. 1990. Glycine and serine in non-photosynthetic tissues.-In: Wallsgrove R.M., Amino acids and their derivatives in higher plants, pp. 111–118.-Cambridge University Press, UK.Google Scholar
  56. Jahngen-Hodge J., Obin M.S., Gong X., Shang F., Nowell T.R., Gong J., Abasi H., Blumberg J., Taylor A. 1997. Regulation of ubiquitin-conjugating enzymes by glutathione following oxidative stress.-J. Biol. Chem. 272: 28218–28226.PubMedCrossRefGoogle Scholar
  57. Jiménez A., Hernández J.A., del Río L., Sevilla F. 1997. Evidence for the presence of the ascorbate-glutathione cycle in mitochondria and peroxisomes of pea leaves.-Plant Physiol. 114: 275–284.PubMedGoogle Scholar
  58. Ju G.C., Li X.Z., Rauser W.E., Oaks A. 1997. Influence of cadmium on the production of γ-glutamylcysteine peptides and enzymes of nitrogen assimilation in Zea mays seedlings.-Physiol. Plant. 101: 793–799.CrossRefGoogle Scholar
  59. Kaiser W.M. 1979. Reversible inhibition of the Calvin cycle and activation of oxidative pentose phosphate cycle in isolated intact chloroplasts by hydrogen peroxide.-Planta 145: 377–382.CrossRefGoogle Scholar
  60. Kaminaka H., Morita S., Nakjima M., Masumara T., Tanaka K. 1998. Gene cloning and expression of cytosolic glutathione reductase in rice (Oryza sativa L.).-Plant Cell Physiol. 39: 1269–1280.PubMedGoogle Scholar
  61. Kendall A.C., Keys A.J., Turner J.C., Lea P.J., Miflin B.J. 1983. The isolation and characterisation of a catalase-deficient mutant of barley (Hordeum vulgare L.).-Planta 159: 505–511.CrossRefGoogle Scholar
  62. Klapheck S., Latus C., Bergmann L. 1987. Localisation of glutathione synthetase and distribution of glutathione in leaf cells of Pisum sativum L.-J. Plant Physiol. 131: 123–131.Google Scholar
  63. Klapheck S. 1988. Homoglutathione: isolation, quantification and occurrence in legumes.-Physiol. Plant. 74: 727–732.Google Scholar
  64. Klapheck S., Chrost B., Starke J., Zimmermann H. 1992. γ-Glutamylcysteinylserine-a new homologue of glutathione in plants of the family Poaceae.-Bot. Acta 105: 174–179.Google Scholar
  65. Kranner I., Grill D. 1996. Significance of thiol-disulfide exchange in resting stages of plant development.-Bot. Acta 109: 8–14.Google Scholar
  66. Kubo A., Sano T., Saji H., Tanaka K., Kondo N., Tanaka K. 1993. Primary structure and properties of glutathione reductase from Arabidopsis thaliana.-Plant Cell Physiol. 34: 1259–1266.Google Scholar
  67. Kunert K.J., Cresswell C.F., Schmidt A., Mullineaux P.M., Foyer CH. 1990. Variations in the activity of glutathione reductase and the cellular glutathione content in relation to sensitivity to methyl viologen in Escherichia coli.-Arch. Biochem. Biophys. 282: 233–238.PubMedCrossRefGoogle Scholar
  68. Kunert K.J., Foyer C. 1993. Thiol/disulfide exchange in plants.-In: Sulfur nutrition and assimilation in higher plants, pp. 139–151.-SPB Academic Pub., The Hague.Google Scholar
  69. Kurokawa H., Ishida T., Nishio K., Arioka H., Sata M., Fukumoto H., Miura M., Saijo N. 1995. γ-Glutamylcysteine synthetase gene overexpression results in increased activity of the ATP-dependent glutathione S-conjugate export pump and cisplatin resistance.-Biochem. Biophys. Res. Commun. 216: 258–64.PubMedCrossRefGoogle Scholar
  70. Lacuesta M., Dever L.V., Muñoz-Rueda A., Lea P.J. 1997. A study of photorespiratory ammonia production in the C4 plant Amaranthus edulis, using mutants with altered photosynthetic capacities.-Physiol. Plant. 99: 447–455.CrossRefGoogle Scholar
  71. Lamoureux G.L., Rusness D.G. 1993. Glutathione in the metabolism and detoxification of xenobiotics in plants.-In: De Kok L.J., Stulen I., Rennenberg H., Brunold C., Rauser W.E. (Eds.), Sulfur nutrition and assimilation in higher plants. Regulatory, agricultural and environmental aspects, pp. 221–237.-Academic Publishing, The Hague.Google Scholar
  72. Lapperre T.S., Jimenez L.A., Antonicelli F., Drost E.M., Hiemstra P.S., Stolk J., MacNee W., Rahman I. 1999. Apocynin increases glutathione synthesis and activates AP-1 in alveolar epithelial cells.-FEBS Lett. 443: 235–239.PubMedCrossRefGoogle Scholar
  73. Law M.Y., Halliwell B. 1986. Purification and properties of glutathione synthetase from spinach (Spinacia oleracea) leaves.-Plant Sci. 43: 185–191.CrossRefGoogle Scholar
  74. Lawton M.A., Clouse S.D., Lamb C.J. 1990. Glutathione-elicited changes in chromatin structure within the promoter of the defense gene chalcone synthetase.-Plant Cell Reports 8: 561–564.CrossRefGoogle Scholar
  75. Lee H., Jo J., Son D. 1998. Molecuular cloning and characterization of the gene encoding glutathione reductase inBrassicacampestris.-Biochem. Biophys. Acta 1395: 309–314.PubMedGoogle Scholar
  76. Levine A., Tenhaken R., Dixon R., Lamb C. 1994. H 2 O 2 from the oxidative burst orchestrates the plant hypersensitive disease resistance response.-Cell 79: 1–20.CrossRefGoogle Scholar
  77. Li Z.-S., Zhao Y., Rea P.A. 1995. Magnesium adenosine 5’-triphosphate-energized transport of glutathione S-conjugates by plant vacuolar membrane vesicles.-Plant Physiol. 107: 1257–1268.PubMedGoogle Scholar
  78. Li Z.-S., Alfenito M., Rea P.A., Walbot V., Dixon R.A. 1997. Vacuolar uptake of the phytoalexin medicarpin by the glutathione conjugate pump.-Phytochem. 45: 689–693.Google Scholar
  79. Lieberman M.W., Weisman A.L., Shi Z.Z., Carter B.Z., Barrios R., Ou C.N., Chévez-Barrios P., Wang Y., Habib G.M., Goodman J.C., Huang S.L., Lebovitz R.M., Matzuk M.M. 1996. Growth retardation and cysteine deficiency in γ-glutamyl transpeptidasedeficient mice.-Proc. Natl. Acad. Sci. USA 93: 7923–7926.PubMedGoogle Scholar
  80. Macnicol P.K. 1987. Homoglutathione and glutathione synthetases of legume seedlings: partial purification and substrate specificity.-Plant Sci. 53: 229–35.CrossRefGoogle Scholar
  81. Mannervik B., Danielson U.H. 1988. Glutathione transferases-structure and catalytic activity.-CRC Crit. Rev. Biochem. 23: 283–337.PubMedGoogle Scholar
  82. Marrs K.A., Alfenito M.R., Lloyd A.M., Walbot V. 1995. A glutathione S-transferase involved in vacuolar transfer encoded by the maize gene Bronze2.-Nature 375: 397–400.PubMedCrossRefGoogle Scholar
  83. Marrs K.A. 1996. The functions and regulation of glutathione S-transferases in plants.-Annu. Rev. Plant Physiol. Plant. Mol. Biol. 47: 127–158.PubMedCrossRefGoogle Scholar
  84. Martinoia E., Grill E., Tommasini R., Kreuz K., Amrhein N. 1993. An ATP-dependent glutathione-S-conjugate ‘export’ pump in the vacuolar membrane of plants.-Nature 364: 247–249.CrossRefGoogle Scholar
  85. Mathieu C. 1999. Formation d’espèces radicalaires et de défense antioxydante dans les nodosités de Légumineuses: mécanismes délétères liés à la sénescence et étude moléculaire des enzymes de synthèse du glutathion et du homoglutathion.-PhD thesis, Université de Nice-Sophia Antipolis, France.Google Scholar
  86. May M.J., Leaver C.J. 1993. Oxidative stimulation of glutathione synthesis in Arabidopsis thaliana suspension cultures.-Plant Physiol. 130: 621–627.Google Scholar
  87. May M. J., Leaver CJ. 1994. Arabidopsis thaliana γ-glutamylcysteine synthetase is structurally unrelated to mammalian, yeast and E. coli homologs.-Proc. Natl. Acad. Sci. USA 91: 10059–10063.PubMedGoogle Scholar
  88. May M.J., Hammond-Kosack K.E., Jones J.D.G. 1996. Involvement of reactive oxygen species, glutathione metabolism, and lipid peroxidation in the Cf-gene-dependent defense response of tomato cotyledons induced by race-specific elicitors of Cladosporiumfulvum.-Plant Physiol. 110: 1367–1379.PubMedGoogle Scholar
  89. May M. J., Vernoux T., Leaver C., van Montagu M., Inzé D. 1998a. Glutathione homeostasis in plants: implications for environmental sensing and plant development.-J. Exp. Bot. 49: 649–667.CrossRefGoogle Scholar
  90. May M.J., Vernoux T., Sánchez-Fernández R., van Montagu M., Inzé D. 1998b. Evidence for posttranscriptional activation of γ-glutamylcysteine synthetase during plant stress responses.-Proc. Natl. Acad. Sci. USA 95: 12049–12054.PubMedCrossRefGoogle Scholar
  91. Meister A. 1988. Glutathione metabolism and its selective modification.-J. Biol. Chem. 263: 17205–17208.PubMedGoogle Scholar
  92. Meuwly P., Thibault P., Rauser W.E. 1993. γ-Glutamylcysteinylglutamic acid-a new homologue of glutathione in maize seedlings exposed to cadmium.-FEBS Lett. 336: 472–476.PubMedCrossRefGoogle Scholar
  93. Moorhead G., Douglas P., Cotelle V., Harthill J., Morrice N., Meek S., Deiting U., Stitt M., Scarabel M., Aitken A., MacKintosh C. 1999. Phosphorylation-dependent interactions between enzymes of plant metabolism and 14-3-3 proteins.-Plant J. 18: 1–12.PubMedCrossRefGoogle Scholar
  94. Mulcahy R.T., Bailey H.H., Gipp J.J. 1994. Up-regulation of γ-glutamylcysteine synthetase activity in melphalan-resistant human multiple myeloma cells expressing increased glutathione levels.-Cancer Chemother. Pharmacol. 34: 67–71.PubMedGoogle Scholar
  95. Mulcahy R.T., Bailey H.H., Gipp J.J. 1995. Transfection of complementary DNAs for the heavy and light subunits of human γ-glutamylcysteine synthetase results in an elevation of intracellular glutathione and resistance to melphalan.-Cancer Res. 55: 4771–75.PubMedGoogle Scholar
  96. Mullineaux P.M., Karpinski S., Jimenez A., Cleary S.P., Robinson C., Creissen G.P. 1998. Indentification of cDNAs encoding plastid-targeted glutathione peroxidase.-Plant J. 13: 375–379.PubMedCrossRefGoogle Scholar
  97. Noctor G., Strohm M., Jouanin L., Kunert K.J., Foyer CH., Rennenberg H. 1996. Synthesis of glutathione in leaves of transgenic poplar (Populus tremula x P. alba) overexpressing γ-glutamylcysteine synthetase.-Plant Physiol. 112: 1071–78.PubMedGoogle Scholar
  98. Noctor G., Jouanin L., Arisi A.-C.M., Valadier M.-H., Roux Y., Foyer CH. 1997a. Lightdependent modulation of foliar glutathione synthesis and associated amino acid metabolism in transformed poplar.-Planta 202: 357–369.CrossRefGoogle Scholar
  99. Noctor G., Arisi A.-C.M., Jouanin L., Valadier M.-H., Roux Y., Foyer CH. 1997b. The role of glycine in determining the rate of glutathione synthesis in poplars. Possible implications for glutathione production during stress.-Physiol. Plant. 100: 255–263.CrossRefGoogle Scholar
  100. Noctor G., Arisi A.-C.M., Jouanin L., Foyer CH. 1998a. Manipulation of glutathione and amino acid biosynthesis in the chloroplast.-Plant Physiol. 118: 471–482.PubMedCrossRefGoogle Scholar
  101. Noctor G., Arisi A.-C.M., Jouanin L., Kunert K.-J., Rennenberg H., Foyer CH. 1998b. Glutathione: biosynthesis and metabolism explored in transformed poplar.-J. Exp. Bot 49: 623–647.Google Scholar
  102. Noctor G., Foyer CH. 1998. Ascorbate and glutathione: keeping active oxygen under control.-Annu. Rev. Plant Physiol. Plant Mol. Biol. 49: 249–279.PubMedCrossRefGoogle Scholar
  103. Noctor G., Arisi A.C.M., Jouanin L., Foyer CH. 1999. Photorespiratory glycine enhances glutathione accumulation in both the chloroplastic and cytosolic compartments.-J. Exp. Bot. 50: 1157–1167.CrossRefGoogle Scholar
  104. Noctor G., Veljovic-Jovanovic S., Foyer CH. 2000. Peroxide processing in photosynthesis: antioxidant coupling and redox sigalling.-Phil. Trans. R. Soc. Lond. B 355: 1465–1475.Google Scholar
  105. Ocheretina O., Scheibe R. 1994. Cysteines of chloroplast NADP-malate dehydrogenase form mixed disulfides.-FEBS Lett. 355: 254–258.PubMedCrossRefGoogle Scholar
  106. Pastori G.M., Trippi V.S. 1992. Oxidative stress induces high rate of glutathione reductase synthesis in a drought-resistant maize strain.-Plant Cell Physiol. 33: 957–961.Google Scholar
  107. Pastori G., Mullineaux P., Foyer CH. 2000. Post-transcriptional regulation prevents accumulation of glutathione reductase protein and activity in the bundle sheath cells of maize.-Plant Physiol. 122: 667–675.PubMedCrossRefGoogle Scholar
  108. Pilon-Smits E.A.H., Ahu Y.L., Pilon M., Terry N. 1999. Overexpression of glutathione synthesizing enzymes enhances cadmium accumulation in Brassica juncea.-In: Proc. 5th Intern. Conf. on the Biogeochem. of Trace Elements, Vienna 1999, pp. 890–891.Google Scholar
  109. Price C.A. 1957. A new thiol in legumes.-Nature 180: 148–149.PubMedGoogle Scholar
  110. Rahman I., Smith C.A.D., Lawson M.F., Harrison D.J., MacNee W. 1996. Induction of γ-glutamylcysteine synthetase by cigarette smoke is associated with AP-1 in human alveolar epithelial cells.-FEBS Lett. 396: 21–25.PubMedCrossRefGoogle Scholar
  111. Rao M.V., Davis K.R. 1999. Ozone-induced cell death occurs via two distinct mechanisms in Arabidopsis: the role of salicylic acid.-Plant J. 17: 603–614.PubMedCrossRefGoogle Scholar
  112. Rasmusson A.G., Møller I.M. 1990. NADP-utilizing enzymes in the matrix of plant mitochondria.-Plant Physiol. 94: 1012–1018.PubMedGoogle Scholar
  113. Rawlins M.R., Leaver C.J., May M.J. 1995. Characterisation of an Arabidopsis thaliana cDNA encoding glutathione synthetase.-FEBS Lett. 376: 81–86.PubMedCrossRefGoogle Scholar
  114. Rawlins M.R. 1998. Glutathione synthetase in Arabidopsis thaliana.-PhD thesis, St Catherine’s college, University of Oxford, UK.Google Scholar
  115. Roxas V.P., Smith R.K., Allen E.R., Allen R.D. 1997. Overexpression of glutathione S-transferase/glutathione peroxidase enhances the growth of transgenic tobacco seedlings during stress.-Nat. Biotechnol. 15: 988–991.PubMedCrossRefGoogle Scholar
  116. Rüegsegger A., Brunold C. 1992. Effect of cadmium on γ-glutamylcysteine synthesis in maize seedlings.-Plant Physiol. 99: 428–433.PubMedGoogle Scholar
  117. Rüegsegger A., Brunold C. 1993. Localisation of γ-glutamylcysteine syntetase and glutathione synthetase activity in maize seedlings.-Plant Physiol. 101: 561–566.PubMedGoogle Scholar
  118. Sánchez-Fernández R., Fricker M., Corben L.B., White N.S., Sheard N., Leaver C.J., Van Montagu M., Inzé D., May M. J. 1997. Cell proliferation and hair tip growth in the Arabidopsis root are under mechanistically different forms of redox control.-Proc. Natl. Acad. Sci. USA 94: 2745–2750.PubMedGoogle Scholar
  119. Schäfer H.J., Haag-Kerwer A., Rausch T. 1998. cDNA cloning and expression analysis of genes encloding GSH synthesis in roots of the heavy-metal accumulator Brassica juncea L.: evidence for Cd-induction of a putative mitochondrial γ-glutamylcysteine synthetase isoform.-Plant Mol. Biol. 37: 87–97.PubMedGoogle Scholar
  120. Schneider S., Bergmann L. 1995. Regulation of glutathione synthesis in suspension cultures of parsley and tobacco.-Bot. Acta 108: 34–40.Google Scholar
  121. Shi M.M., Kugelman A., Iwamoto T., Tian L., Forman H.J. 1994. Quinone induced oxidative stress elevates glutathione and induces γ-glutamylcysteine synthetase activity in rat lung epithelial L2 cells.-J. Biol. Chem. 42: 26512–26517.Google Scholar
  122. Smith I.K., Kendall A.C., Keys A.J., Turner J.C., Lea P.J. 1984. Increased levels of glutathione in a catalase-deficient mutant of barley (Hordeum vulgare L.).-Plant Sci. Lett. 37: 29–33.Google Scholar
  123. Smith I.K. 1985. Stimulation of glutathione synthesis in photorespiring plants by catalse inhibitors.-Plant Physiol. 79: 1044–1047.PubMedGoogle Scholar
  124. Smith I.K., Kendall A.C., Keys A.J., Turner J.C., Lea P.J. 1985. The regulation of the biosynthesis of glutathione in leaves of barley (Hordeum vulgare L.).-Plant Sci. 41: 11–17.CrossRefGoogle Scholar
  125. Stevens R.G., Creissen G.P., Mullineaux P.M. 1997. Cloning and characterization of a cytosolic glutathione reductase cDNA from pea (Pisum sativum L.) and its expression in response to stress.-Plant Mol. Biol. 35: 641–654.PubMedCrossRefGoogle Scholar
  126. Strohm M., Jouanin L., Kunert K.-J., Pruvost C., Polle A., Foyer CH., Rennenberg H. 1995. Regulation of glutathione synthesis in leaves of transgenic poplar (Populus tremula x P. alba) overexpressing glutathione synthetase.-Plant J. 7: 141–145.CrossRefGoogle Scholar
  127. Sun W.M., Huang Z.Z., Lu S.C. 1996. Regulation of γ-glutamycysteine synthetase by protein phophorylation.-Biochem. J. 320: 321–328.PubMedGoogle Scholar
  128. Suthanthiran M., Anderson M.E., Sharma V.K., Meister A. 1990. Glutathione regulates activation-dependent DNA synthesis in highly purified normal human T lymphocytes stimulated via the CD2 and CD3 antigens.-Proc. Natl. Acad. Sci. USA 87: 3343–3347.PubMedGoogle Scholar
  129. Takahashi H., Chen Z., Du H., Liu Y., Klessig D.F. 1997. Development of necrosis and activation of disease resistance in transgenic tobacco plants with severely reduced catalase levels.-Plant J. 11: 993–1005.PubMedCrossRefGoogle Scholar
  130. Tate S.S., Meister A. 1985. γ-Glutamyl transpeptidase from kidney.-Meths. Enzymol. 113: 400–419.Google Scholar
  131. Thomas J.A., Poland B., Honzatko R. 1995. Protein sulfhydryls and their role in the antioxidant function of protein S-thiolation.-Arch. Biochem. Biophys. 319: 1–9.PubMedCrossRefGoogle Scholar
  132. Tu Z.H., Anders M.W. 1998. Up-regulation of glutamate-cysteine ligase gene expression by butylated hydroxytoluene is mediated by transcription factor AP-1.-Biochem. Biophys. Res. Comm. 244: 801–805.PubMedCrossRefGoogle Scholar
  133. Ullmann P., Gondet L., Potier S., Bach T.J. 1996. Cloning of Arabidopsis thaliana glutathione synthetase (GSH 2) by functional complementation of a yeast gsh2 mutant.-Eur. J. Biochem. 236: 662–669.PubMedCrossRefGoogle Scholar
  134. Vanacker H., Carver T.L.W., Foyer CH. 2000. Early H 2 O 2 accumulation in mesophyll cells leads to induction of glutathione during the hyper-sensitive response in the barleypowdery mildew interaction.-Plant Physiol. 123: 1289–1300.PubMedCrossRefGoogle Scholar
  135. Vivekanandan M., Edwards G.E. 1987. Activation of NADP-malate dehydrogenase in C 3 plants by reduced glutathione.-Photosynth. Res. 14: 113–124.Google Scholar
  136. Volk S., Feierabend J. 1989. Photoinactivation of catalase at low temperature and its relevance to photosynthetic and peroxide metabolism in leaves.-Plant Cell. Environ. 12: 701–712.Google Scholar
  137. Wild A.C., Gipp J.J., Mulcahy R.T. 1998. Overlapping antioxidant response element and PMA response element sequenes mediate basal and β-napthoflavone-induced expression of the human γ-glutamylcysteine synthetase catalytic subunitgene.-Biochem. J. 332: 373–381.PubMedGoogle Scholar
  138. Willekens H., Chamnongpol S., Davey M., Schraudner M., Langebartels C., Van Montagu M., Inzé D., Van Camp W. 1997. Catalase is a sink for H 2 O 2 and is indispensable for stress defence in C 3 plants.-EMBO J. 16: 4806–4816.PubMedCrossRefGoogle Scholar
  139. Wingate V.P.M., Lawton M.A., Lamb C.J. 1988. Glutathione causes a massive and selective induction of plant defense genes.-Plant Physiol. 87: 206–210.CrossRefPubMedGoogle Scholar
  140. Wingsle G., Karpinski S. 1996. Differential redox regulation by glutathione of glutathione reductase and CuZn-superoxide dismutase gene expression in Pinus sylvestris L. needles.-Planta 198: 151–157.PubMedCrossRefGoogle Scholar
  141. Wolf A.E., Dietz K.J., Schroder P. 1996. Degradation of glutathione S-conjugates by a carboxypeptidase in the plant vacuole.-FEBS lett. 384: 31–34.PubMedCrossRefGoogle Scholar
  142. Wolosiuk R.A., Buchanan B.B. 1977. Thioredoxin and glutathione regulate photosynthesis in choroplasts.-Nature 266: 565–567.CrossRefGoogle Scholar
  143. Xiang C., Zhong-He M., Lam E. 1996. Coordinated activation of as-1-type elements and a tobacco glutathione-S-transferase gene by auxins, salicylic acid, methyl-jasmonate and hydrogen peroxide.-Plant Mol. Biol. 32: 415–426.PubMedCrossRefGoogle Scholar
  144. Xiang C., Oliver D.J. 1998. Glutathione metabolic genes coordinately respond to heavy metals and jasmonic acid in Arabidopsis.-Plant Cell 10: 1539–1550.PubMedCrossRefGoogle Scholar
  145. Yamaguchi K., Mori H., Nishimura M. 1995. A novel isozyme of ascorbate peroxidase localized on glyoxysomal and leaf peroxisomal membranes in pumpkin.-Plant Cell Physiol. 36: 1157–1162.PubMedGoogle Scholar
  146. Zhang L., Robbins M.P., Carver T.L.W., Zeyen R.J. 1997a. Induction of phenylpropanoid gene transcripts in oat attacked by Erysiphe graminis at 20 °C and 10 °C.-Physiol. Mol. Plant Pathol. 51: 15–33.CrossRefGoogle Scholar
  147. Zhang H., Wang J., Nickel U., Allen R.D., Goodman H.M. 1997b. Cloning and expression of an Arabidopsis gene encoding a putative peroxisomal ascorbate peroxidase.-Plant Mol. Biol. 34: 967–971.PubMedCrossRefGoogle Scholar
  148. Zhu Y., Pilon-Smits E.A.H., Jouanin L., Terry N. 1999. Overexpression of glutathione synthetase in Brassica juncea enhances cadmium tolerance and accumulation.-Plant Physiol. 119: 73–79Google Scholar

Copyright information

© Kluwer Academic Publishers 2001

Authors and Affiliations

  • Christine H. Foyer
  • Graham Noctor

There are no affiliations available

Personalised recommendations