Separating School, Classroom, and Student Variances and Their Relationship to Socio-economic Status

  • Albert E. Beaton
  • Laura M. O’Dwyer

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Beaton, A. E., Mullis, I. V., Martin, M. O., Gonzalez, E. J., Kelly, D. L., & Smith, T. A. (1996). Mathematics achievement in the middle school years: IEA’s Third International Mathematics and Science Study. Chestnut Hill, MA: Center for the Study of Testing, Evaluation, and Educational Policy, Boston College.Google Scholar
  2. Beaton, A. E. (2001). An index to measure within school tracking. In progress.Google Scholar
  3. Bryk, A. S., & Raudenbush, S. W. (1992). Hierarchical linear models: Applications and data analysis methods. Newbury Park, CA: SageGoogle Scholar
  4. Bryk, A. S., Raudenbush, S. W., & Congdon, R. (1996). Hierarchical linear and nonlinear modeling with the HLM/2 and HLM/3 programs. Chicago: Scientific Software International, Inc.Google Scholar
  5. Coleman, J. S., Campbell, E., Hobson, C., McPartland, J., Mood, A. M., Weinfeld, F., & York, R. (1966). Equality of educational opportunity. Washington, DC: U. S. Government Printing Office.Google Scholar
  6. Foy, P., Rust, K., & Schleicher, A. (1996). Sample design. In M. O. Martin and D. L. Kelly (Eds.), Third International Mathematics and Science Study. Technical report volume 1: Design and development. Chestnut Hill, MA: Center for the Study of Testing, Evaluation, and Educational Policy, Boston College.Google Scholar
  7. Kim, J. (1997) Republic of Korea. In D. F. Robitaille (Ed.), National Contexts for Mathematics and Science Education. An encyclopedia of the education systems participating in TIMSS. Vancouver, Canada: Pacific Educational Press.Google Scholar
  8. Kreft, I., & de Leeuw, J. (1998). Introducing multilevel modeling. Thousand Oaks, CA: SAGE Publications, Inc.Google Scholar
  9. Leung, F. K. S., & Law, N. W. Y. (1997) Hong Kong. In D. F. Robitaille (Ed.), National Contexts for Mathematics and Science Education. An encyclopedia of the education systems participating in TIMSS. Vancouver, Canada: Pacific Educational Press.Google Scholar
  10. O’Dwyer, L. M. (2000). Extending the application of multi-level modeling to data from the Third International Mathematics and Science Study (Doctoral Dissertation, Boston College, 2000). UMI Dissertation Abstracts Number 9995932.Google Scholar
  11. Papanastasiou, C. (1997) Cyprus. In D. F. Robitaille (Ed.), National Contexts for Mathematics and Science Education. An encyclopedia of the education systems participating in TIMSS. Vancouver, Canada: Pacific Educational Press.Google Scholar
  12. Raczek, A. E. (2001). Comparing the reliability and validity of TIMSS contextual indicators across participating countries. Paper presented at the Annual Meeting of the American Educational Research Association, Seattle, WA.Google Scholar
  13. Riquarts, K. (1997) Germany. In D. F. Robitaille (Ed.), National Contexts for Mathematics and Science Education. An encyclopedia of the education systems participating in TIMSS. Vancouver, Canada: Pacific Educational Press.Google Scholar
  14. Robitaille D. F. (Ed.). (1997). National Contexts for Mathematics and Science Education. An encyclopedia of the education systems participating in TIMSS. Vancouver, Canada: Pacific Educational Press.Google Scholar
  15. Robitaille, D. F., Beaton, A. E., & Plomp, T. (Eds.). (2000). The impact of TIMSS on the teaching and learning of mathematics and science. Vancouver, Canada: Pacific Educational Press.Google Scholar
  16. Setinc, M. (1997) Slovenia. In D. F. Robitaille (Ed.), National Contexts for Mathematics and Science Education. An encyclopedia of the education systems participating in TIMSS. Vancouver, Canada: Pacific Educational Press.Google Scholar
  17. Snijders, T. A. B. & Bosker, R. J. (1994). Modeled variance in two-level models. Sociological Methods and Research, 22(3), 342–363.Google Scholar

Copyright information

© Kluwer Academic Publishers 2002

Authors and Affiliations

  • Albert E. Beaton
  • Laura M. O’Dwyer

There are no affiliations available

Personalised recommendations