Advertisement

Theoretical Prediction of Bond Dissociation Energies for Transition Metal Compounds and Main Group Complexes with Standard Quantum-Chemical Methods

  • Nikolaus Fröhlich
  • Gernot Frenking
Part of the Understanding Chemical Reactivity book series (UCRE, volume 22)

Conclusion

The compilation of calculated bond dissociation energies of transition metal compounds and main group complexes, obtained at a standard level of theory that is not very expensive computationally, shows that quantum chemistry can provide important thermodynamic data for a wide range of compounds. The theoretical results are quite reliable and can be obtained with much less effort than it is incurred in the course of experimental work. Nevertheless, it is very important to emphasize that an indiscriminate and uncritical use of theoretical methods to calculate BDEs and other properties of molecules should be strongly discouraged. Although the theoretical approaches and software are equally sophisticated, quantum-chemical programs are unfortunately not as sensitive as experimental techniques to unqualified usage. It requires experience and insight to interpret the calculated data in a critical and correct way. Thus, although we encourage experimentalists to employ modern quantum chemical tools to complement their research, we strongly suggest that an experienced theoretician should be consulted before any conclusions about the meaning of the theoretical results are drawn.

Keywords

Bond Energy Bond Dissociation Energy Transition Metal Compound Carbonyl Complex Carbene Complex 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    P. v. R. Schleyer, N. L. Allinger, T. Clark, P. A. Kollman, H. F. Schaefer III, and P. R. Scheiner (Eds.), Encyclopedia of Computational Chemistry, Vols. 1–5, Wiley-VCH, Chichester (1998).Google Scholar
  2. 3.
    G. Frenking and N. Fröhlich, Chem. Rev. 100, 717 (2000).CrossRefGoogle Scholar
  3. 4.
    G. Frenking and U. Pidun, J. Chem. Soc. Dalton Trans. 1653 (1997).Google Scholar
  4. 5.
    N. Fröhlich and G. Frenking, Solid State Organometallic Chemistry: Methods and Application, M. Gielen and B. Wrackmeyer (Eds.), Wiley-VCH, New York (1999) p.173.Google Scholar
  5. 6.
    C. Boehme, J. Uddin, and G. Frenking, Coord. Chem. Rev. 197, 249 (2000).CrossRefGoogle Scholar
  6. 7.
    A. J. Lupinetti, S. H. Strauss, and G. Frenking, Prog. Inorg. Chem., in press.Google Scholar
  7. 8.
    M. Torrent, M. Sola, and G. Frenking, Chem. Rev. 100, 439 (2000).CrossRefGoogle Scholar
  8. 9.
    V. Jonas, G. Frenking, and M. T. Reetz, J. Comput. Chem. 13, 919 (1992).Google Scholar
  9. 10.
    V. Jonas, Ph.D. thesis, Marburg (1993).Google Scholar
  10. 11.
    P. J. Hay and W. R. Wadt, J. Chem. Phys. 82, 299 (1985).Google Scholar
  11. 12.
    R. Ditchfield, W. J. Hehre, and J. A. Pople, J. Chem. Phys. 54, 724 (1971).Google Scholar
  12. 13.
    W. J. Hehre, R. Ditchfield, and J. A. Pople, J. Chem. Phys. 56, 2257 (1972).Google Scholar
  13. 14.
    P. C. Hariharan and J. A. Pople, Mol. Phys. 27, 209 (1974).Google Scholar
  14. 15.
    P. C. Hariharan and J. A. Pople, Theor. Chim. Acta 28, 213 (1973).CrossRefGoogle Scholar
  15. 16.
    M. S. Gordon, Chem. Phys. Lett. 76, 163 (1980).CrossRefGoogle Scholar
  16. 17.
    M. Dolg, U. Wedig, H. Stoll, and H. Preuss, J. Chem. Phys. 86, 866 (1987).Google Scholar
  17. 18.
    G. Frenking, I. Antes, M. Boehme, S. Dapprich, A. W. Ehlers, V. Jonas, A. Neuhaus, M. Otto, R. Stegmann, A. Veldkamp, and S. F. Vyboishchikov, Reviews in Computational Chemistry, Vol. 8, K. B. Lipkowitz and D. B. Boyd (Eds.), VCH, New York (1996), p. 63.Google Scholar
  18. 19.
    S. Dapprich, U. Pidun, A. W. Ehlers, and G. Frenking, Chem. Phys. Lett. 242, 521 (1995).CrossRefGoogle Scholar
  19. 20.
    A. D. Becke, Phys. Rev. A 38, 3098 (1988); J. P. Perdew, Phys. Rev. B 33, 8822 (1986).Google Scholar
  20. 21.
    A. D. Becke, J. Chem. Phys. 98, 1372 (1993); A. D. Becke, J. Chem. Phys. 98, 5648 (1993); C. Lee, W. Yang, and R. G. Parr, Phys. Rev. B 37, 785 (1988); P. J. Stephens, F. J. Devlin, C. F. Chabalowski, and M. J. Frisch, J. Phys. Chem. 88, 11623 (1994).Google Scholar
  21. 22.
    M. Diedenhofen, T. Wagener, and G. Frenking, Computational Organometallic Chemistry Marcell Dekker, New York, in print.Google Scholar
  22. 23.
    D. Andrae, U. Häussermann, M. Dolg, and H. Stoll, Theor. Chim. Acta 77, 123 (1990).CrossRefGoogle Scholar
  23. 24.
    P. Pyykkö, Chem. Rev. 88, 563 (1988).Google Scholar
  24. 25.
    J. Almlöf and O. Gropen, Rev. Comput. Chem. 8, 203 (1996).Google Scholar
  25. 26.
    P. Schwerdtfeger and M. Seth, Encyclopedia of Computational Chemistry, P. v. R. Schleyer, N. L. Allinger, T. Clark, P. A. Kollman, H. F. Schaefer III, P. R. Scheiner (Eds.), Vol. 4, Wiley-VCH, Chichester (1998), p. 2480.Google Scholar
  26. 27.
    L. A. Barnes, M. Rosi, and C. W. Bauschlicher, J. Chem. Phys. 83, 609 (1990).Google Scholar
  27. 28.
    I. Antes and G. Frenking, Organometallics 14, 4263 (1995).CrossRefGoogle Scholar
  28. 29.
    Gaussian 94: M. J. Frisch, G. W. Trucks, H. B. Schlegel, P. M. W. Gill, B. G. Johnson, M. A. Robb, J. R. Cheeseman, T. A. Keith, G. A. Petersson, J. A. Montgomery, K. Raghavachari, M. A. Al-Laham, V. G. Zakrzewski, J. V. Ortiz, J. B. Foresman, J. Cioslowski, B. B. Stefanov, A. Nanayakkara, M. Challacombe, C. Y. Peng, P. Y. Ayala, W. Chen, M. W. Wong, J. L. Andres, E. S. Replogle, R. Gomberts, R. L. Martin, D. J. Fox, J. S. Binkley, D. J. Defrees, I. Baker, J. J. P. Stewart, M. Head-Gordon, C. Gonzalez, and J. A. Pople, Gaussian Inc., Pittsburgh, PA (1995).Google Scholar
  29. 30.
    Gaussian 98: M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J.R. Cheeseman, V. G. Zakrzewski, J. A. Montgomery, R. E. Stratmann, J. E. Burant, S. Dapprich. J. M. Milliam, A. D. Daniels, K. N. Kudin, M. C. Strain, O. Farkas, J. Tomasi, V. Barone, M. Cossi, R. Cammi, B. Mennucci, C. Pomelli, C. Adamo, S. Clifford, J. Ochterski, G. A. Petersson, P. Y. Ayala, Q. Cui, K. Morokuma, D. K. Malick, A. D. Rabuck, K. Raghavachari, J. B. Foresman, J. Cioslowski, J. V. Ortiz, B.. B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R. Gomberts, R. L. Martin, D. J. Fox, T. A. Keith, M. A. Al-Laham, C. Y. Peng, A. Nanayakkara, C. Gonzalez, M. Challacombe, P. M. W. Gill, B. G. Johnson, W. Chen, M. W. Wong, J. L. Andres, M. Head-Gordon, E. S. Replogle, and J. A. Pople, Gaussian Inc., Pittsburgh, PA (1998).Google Scholar
  30. 31.
    R. Ahlrichs, Encyclopedia of Computational Chemistry, P. v. R. Schleyer, N. L. Allinger, T. Clark, P. A. Kollman, H. F. Schaefer III, P. R. Scheiner (Eds.), Vol. 5, Wiley-VCH, Chichester (1998), p. 3123.Google Scholar
  31. 32.
    ACES II, an ab initio program system written by J. F. Stanton, J. Gauss, J. D. Watts, W. J. Lauderdale, and R. J. Bartlett, University of Florida, Gainesville, FL (1991).Google Scholar
  32. 33.
    H. J. Werner and P. J. Knowles, MOLPRO, University of Sussex, Sussex, UK.Google Scholar
  33. 34.
    E. J. Baerends, D. E. Ellis, and P. Ros, Chem. Phys. 2, 41 (1973); G. teVelde and E. J. Baerends, J. Comput. Phys. 99, 84 (1992).Google Scholar
  34. 35.
    T. Ziegler, V. Tschinke, and E. J. Baerends, J. Chem. Phys. 74, 1271 (1981); T. Ziegler, V. Tschinke, E. J. Baerends, J. G. Snijders, and W. Ravenek, J. Phys. Chem. 93, 3050 (1989).Google Scholar
  35. 36.
    E. van Lenthe, E. J. Baerends, and J. G. Snijders, J. Chem. Phys. 99, 4597 (1993); E. van Lenthe, E. J. Baerends, and J. G. Snijders, J. Chem. Phys. 101, 9783 (1994).CrossRefGoogle Scholar
  36. 37.
    A. W. Ehlers and G. Frenking, Organometallics 14, 423 (1995).CrossRefGoogle Scholar
  37. 38.
    A. W. Ehlers and G. Frenking, J. Am. Chem. Soc. 116, 1514 (1994).CrossRefGoogle Scholar
  38. 39.
    A. Diefenbach, M. Bickelhaupt, and G. Frenking, J. Am. Chem. Soc. 122, 6449 (2000).CrossRefGoogle Scholar
  39. 40.
    R. K. Szilagyi and G. Frenking, Organometallics 16, 4807 (1997).CrossRefGoogle Scholar
  40. 41.
    M. Dörr, diploma thesis, Marburg (2001).Google Scholar
  41. 42.
    A. W. Ehlers, Ph.D. thesis, Marburg (1994).Google Scholar
  42. 43.
    A. E. Stevens, C. S. Feigerle, and W. C. Lineberger, J. Am. Chem. Soc. 104, 5026 (1982).Google Scholar
  43. 44.
    K. E. Lewis, D. M. Golden, and G. P. Smith, J. Am. Chem. Soc. 106, 3905 (1984).Google Scholar
  44. 45.
    R. Huq, A.J. Poë, and S. Chawla, Inorg. Chim. Acta 38, 121 (1980).CrossRefGoogle Scholar
  45. 46.
    J.-K. Shen, Y.-C. Gao, Q.-Z. Shi, and F. Basolo, Inorg. Chem. 28, 4304 (1989).CrossRefGoogle Scholar
  46. 47.
    A. J. Lupinetti, V. Jonas, W. Thiel, S. H. Strauss, and G. Frenking, Chem. Eur. J. 5, 9 (1999).CrossRefGoogle Scholar
  47. 48.
    F. Meyer, Y. M. Chen, and P. Armentrout, J. Am. Chem. Soc. 117, 4071 (1995).Google Scholar
  48. 49.
    A. W. Ehlers, S. Dapprich, S. F. Vyboishchikov, and G. Frenking, Organometallics 15, 105 (1996).CrossRefGoogle Scholar
  49. 50.
    S. Dapprich, U. Pidun, A. W. Ehlers, and G. Frenking, Chem. Phys. Lett. 242, 521 (1995).CrossRefGoogle Scholar
  50. 51.
    S. Dapprich and G. Frenking, Angew. Chem. 107, 383 (1995); S. Dapprich and G. Frenking, Angew. Chem. Int. Ed. Engl. 34, 354 (1995).Google Scholar
  51. 52.
    G. D. Michels, G. D. Flesh, and H. J. Svec, Inorg. Chem. 19, 479 (1980).CrossRefGoogle Scholar
  52. 53.
    J. R. Wells, P. G. House, and E. J. Weitz, Phys. Chem. 98, 8343 (1994).Google Scholar
  53. 54.
    U. Pidun and G. Frenking, Organometallics 14, 5325 (1995).CrossRefGoogle Scholar
  54. 55.
    A. Kovács and G. Frenking, Organometallics, in press.Google Scholar
  55. 56.
    I. W. Stolz, G. R. Dobson, and R. K. Sheline, Inorg. Chem. 2, 1264 (1963).Google Scholar
  56. 57.
    Y. Zheng, W. Wong, J. Lin, Y. She, and K. Fu, Chem. Phys. Lett. 202, 148 (1993).CrossRefGoogle Scholar
  57. 58.
    Y. Chen, M. Hartmann, and G. Frenking, Z. Anorg. Allg. Chem., in press.Google Scholar
  58. 59.
    J. J. Turner, M. B. Simpson, M. Poliakoff, and W. B. Maier II, J. Am. Chem. Soc. 105, 3898 (1983).Google Scholar
  59. 60.
    K. Wichmann, Diploma thesis, Marburg (2000); K. Wichmann and G. Frenking, to be published.Google Scholar
  60. 61.
    A. W. Ehlers, G. Frenking, and E. J. Baerends, Organometallics 16, 4896 (1997).CrossRefGoogle Scholar
  61. 62.
    J. R. Wells and E. Weitz, J. Am. Chem. Soc. 114, 2783 (1992).CrossRefGoogle Scholar
  62. 63.
    B. H. Weiller, J. Am. Chem. Soc. 114, 10910 (1992).CrossRefGoogle Scholar
  63. 64.
    K. H. Dötz, H. Fischer, P. Hofmann, F. R. Kreissl, U. Schubert, and K. Weiss, Transition Metal Carbene Complexes, Verlag Chemie, Weinheim (1983); R. R. Schrock, Acc. Chem. Res. 12, 98 (1979).Google Scholar
  64. 65.
    S. F. Vyboishchikov and G. Frenking, Chem. Eur. J. 4, 1428 (1998).Google Scholar
  65. 66.
    C. Boehme and G. Frenking, Organometallics 17, 5801 (1998).CrossRefGoogle Scholar
  66. 67.
    S. F. Vyboishchikov and G. Frenking, Chem. Eur. J. 4, 1439 (1998).Google Scholar
  67. 68.
    M. Böhme, T. Wagener, and G. Frenking, J. Organomet. Chem. 520, 31 (1996).Google Scholar
  68. 69.
    J. Uddin, S. Dapprich, G. Frenking, and B. Yates, Organometallics 18, 457 (1999).CrossRefGoogle Scholar
  69. 70.
    A. Kovács and G. Frenking, Organometallics 18, 887 (1999).Google Scholar
  70. 71.
    U. Pidun and G. Frenking, J. Organomet. Chem. 525, 269 (1996).CrossRefGoogle Scholar
  71. 72.
    J. Wei, D. Stetzkamp, B. Nuber, R. A. Fischer, C. Boehme, and G. Frenking, Angew. Chem. 109, 95 (1997); J. Wei, D. Stetzkamp, B. Nuber, R. A. Fischer, C. Boehme, and G. Frenking, Angew. Chem. Int. Ed. Engl. 36, 70 (1997).Google Scholar
  72. 73.
    R. A. Fischer, M. M. Schulte, J. Weiss, L. Zsolnai, A. Jacobi, G. Huttner, G. Frenking, C. Boehme, and S. F. Vyboishchikov, J. Am. Chem. Soc. 120, 1237 (1998).Google Scholar
  73. 74.
    C. Boehme and G. Frenking, Chem. Eur. J. 5, 2184 (1999).CrossRefGoogle Scholar
  74. 75.
    W. Uhl, M. Benter, S. Melle, W. Saak, G. Frenking, and J. Uddin, Organometallics 18, 3778 (1999).Google Scholar
  75. 76.
    J. Uddin, C. Boehme, and G. Frenking, Organometallics 19, 571 (2000).CrossRefGoogle Scholar
  76. 77.
    M. Esser, B. Neumüller, W. Petz, J. Uddin, and G. Frenking, Z. Anorg. Allg. Chem. 626, 915 (2000).CrossRefGoogle Scholar
  77. 78.
    D. Weiss, T. Steinke, M. Winter, R.A. Fischer, N. Fröhlich, J. Uddin, and G. Frenking, Organometallics 19, 4583 (2000).CrossRefGoogle Scholar
  78. 79.
    J. Uddin and G. Frenking, J. Am. Chem. Soc. 123, 1683 (2001).CrossRefGoogle Scholar
  79. 80.
    C. Boehme, PhD thesis, Marburg (1998).Google Scholar
  80. 81.
    R. A. Fischer, A. Miehr, H. Hoffmann, W. Rogge, C. Boehme, G. Frenking, and E. Herdtweck, Z. Anorg. Allg. Chem. 625, 1466 (1999).CrossRefGoogle Scholar
  81. 82.
    K. T. Giju, F. M. Bickelhaupt, and G. Frenking, Inorg. Chem. 39, 4776 (2000).CrossRefGoogle Scholar
  82. 83.
    G. A. Irvine, M. J. G. Lesley; T. B. Marder, N. C. Norman, C. R. Rice, E. G. Robins, W. R. Roper, G. R. Whittell, and L. J. Wright, Chem. Rev. 98, 2685 (1998).CrossRefGoogle Scholar
  83. 84.
    P. B. Armentrout and B. L. Kickel, Organometallic Ion Chemistry S. B. Freiser (Ed.), Kluwer, Dordrecht, in press; P. B. Armentrout, personal communication (1994).Google Scholar
  84. 85.
    S. G. Lias, J. E. Bartmess, J. F. Liebman, J.L. Holmes, R. D. Levin, and W. G. Mallard, J. Phys. Chem. Ref. Data 17, Suppl.1 (1998).Google Scholar
  85. 86.
    S. F. Vyboichshikov and G. Frenking, Theor. Chem. Acc. 102, 300 (1999).Google Scholar
  86. 87.
    T. Wagener and G. Frenking, Inorg. Chem. 37, 1805 (1998).CrossRefGoogle Scholar
  87. 88.
    V. Jonas, G. Frenking, and M. T. Reetz, J. Am. Chem. Soc. 116, 8741 (1994).CrossRefGoogle Scholar
  88. 89.
    S. Fau and G. Frenking, Mol. Phys. 96, 519 (1999).CrossRefGoogle Scholar
  89. 90.
    A. Beste, O. Krämer, A. Fischer, and G. Frenking, Eur. J. Inorg. Chem. 2037 (1999).Google Scholar
  90. 91.
    A. Diefenbach and G. Frenking, to be published.Google Scholar
  91. 92.
    J.-F. Gal and P.-C. Maria, Progress in Phys. Org. Chem. 17, 159 (1990).Google Scholar
  92. 93.
    G. A. Andersen, F. R. Forgaard, and A. Haaland, Acta Chem. Scand. 26, 1947 (1972).Google Scholar
  93. 94.
    W. Koch, J. R. Collins, and G. Frenking, Chem. Phys. Lett. 132, 330 (1986).CrossRefGoogle Scholar
  94. 95.
    G. Frenking, W. Koch, J. Gauss, and D. Cremer, J. Am. Chem. Soc. 110, 8007 (1988).CrossRefGoogle Scholar
  95. 96.
    W. Koch and G. Frenking, Molecules in Natural Science and Medicine. An Encomium for Linus Pauling, Z. B. Maksic and M. Eckert-Maksic (Eds.), Ellis Horwood, New York (1991), p. 225.Google Scholar
  96. 97.
    A. Veldkamp and G. Frenking, Chem. Phys. Lett. 226, 11 (1994).CrossRefGoogle Scholar
  97. 98.
    G. Frenking, S. Dapprich, K. F. Köhler, W. Koch, and J. R. Collins, Mol. Phys. 89, 1245 (1996).Google Scholar
  98. 99.
    G. Frenking, W. Koch, and J. R. Collins, J. Chem. Soc. Chem. Commun. 1147 (1988).Google Scholar
  99. 100.
    G. Frenking and D. Cremer, Structure and Bonding, Vol. 73, Springer Verlag, Heidelberg (1990), p. 17.Google Scholar
  100. 101.
    G. Frenking, W. Koch, F. Reichel, and D. Cremer, J. Am. Chem. Soc. 112, 4240 (1990).CrossRefGoogle Scholar
  101. 102.
    C. A. Thompson and L. Andrews, J. Am. Chem. Soc. 116, 423 (1994).Google Scholar
  102. 103.
    L. Andrews and T. J. Tague, J. Am. Chem. Soc. 116, 6856 (1994).Google Scholar
  103. 104.
    C. A. Thompson and L. Andrews, J. Chem. Phys. 100, 8689 (1994).CrossRefGoogle Scholar

Copyright information

© Kluwer Academic Publishers 2001

Authors and Affiliations

  • Nikolaus Fröhlich
    • 1
  • Gernot Frenking
    • 1
  1. 1.Fachbereich ChemiePhilipps-Universität MarburgMarburgGermany

Personalised recommendations