Advertisement

Theoretical Thermochemistry of Radicals

  • David J. Henry
  • Leo Radom
Part of the Understanding Chemical Reactivity book series (UCRE, volume 22)

Keywords

Bond Dissociation Energy Reaction Enthalpy Isodesmic Reaction Methyl Radical Addition Spin Contamination 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    For recent reviews, see: Energetics of Organic Free Radicals, J. A. M. Simoes, A. Greenberg, and J. F. Liebman (eds.), Blackie Academic and Professional, London (1996).Google Scholar
  2. 2.
    For an overview, see: J. A. M. Simoes and M. A. V. R. Da Silva, in Energetics of Stable Molecules and Reactive Intermediates, NATO ASI Series C, Vol. 535, M. E. Minas da Piedade (Ed.), Kluwer Academic, Dordecht, The Netherlands (1999), p. 1.Google Scholar
  3. 3.
    J. Berkowitz, G. B. Ellison, and D. Gutman, J. Phys. Chem. 98, 2744 (1994).CrossRefGoogle Scholar
  4. 4.
    W. J. Hehre, L. Radom, P. v. R. Schleyer, and J. A. Pople, Ab Initio Molecular Orbital Theory, Wiley, New York (1986); F. Jensen, Introduction to Computational Chemistry, Wiley, New York (1999).Google Scholar
  5. 5.
    For recent reviews, see for example: Computational Thermochemistry, K. K. Irikura and D. J. Frurip (Eds.), ACS Symposium Series, Vol. 677, American Chemical Society, Washington, DC (1998); K. K. Irikura, in Energetics of Stable Molecules and Reactive Intermediates, NATO ASI Series C, Vol. 535, M. E. Minas da Piedade (Ed.), Kluwer Academic, Dordecht, The Netherlands (1999), p. 353; J. M. L. Martin, in Energetics of Stable Molecules and Reactive Intermediates, NATO ASI Series C, Vol. 535, M. E. Minas da Piedade (Ed.), Kluwer Academic, Dordecht, The Netherlands (1999), p. 373; L. A. Curtiss, P. C. Redfern, and D. J. Frurip, in Reviews in Computational Chemistry, Vol. 15, K. B. Lipkowitz and D. B. Boyd (Eds.), Wiley-VCH, New York (2000), p. 147.Google Scholar
  6. 6.
    For a recent review of calculations on open-shell systems, see: T. Bally and W. T. Borden, in Reviews in Computational Chemistry, Vol. 13, K. B. Lipkowitz and D. B. Boyd (Eds.), Wiley-VCH, New York (1999), p. 1.Google Scholar
  7. 7.
    For a recent review, see: T. H. Dunning. Jr., K. A. Peterson, and D. E. Woon, in Encyclopedia of Computational Chemistry, P. v. R. Schleyer, N. L. Allinger, T. Clark, J. Gasteiger, P. Kollman, H. F. Schaefer III, and P. R. Shreiner (Eds.), Wiley, Chichester (1998), p. 88.Google Scholar
  8. 9.
    See for example: R. G. Parr and W. Yang, Density Functional Theory of Atoms and Molecules, Oxford University Press, New York (1989); W. Kohn, A. D. Becke, and R. G. Parr, J. Phys. Chem. 100, 12974 (1996); P. Geerlings, F. De Proft, and W. Langenaeker (Eds.), Density Functional Theory: A Bridge Between Chemistry and Physics, VUB Press, Brussels (1999).Google Scholar
  9. 10.
    J. F. Stanton, J. Chem. Phys. 101, 371 (1994).Google Scholar
  10. 11.
    Several of the methods referred to in this chapter use the URCCSD(T) procedure in which a spin-unrestricted CCSD(T) calculation is performed on a high-spin RHF reference wavefunction, as implemented in the MOLPRO program.: H. J. Werner, P. J. Knowles, R. D. Amos, A. Bernhardsson, A. Berning, P. Celani, D. L. Cooper, M. J. O. Deegan, A. J. Dobbyn, F. Eckert, C. Hampel, G. Hetzer, T. Korona, R. Lindh, A. W. Lloyd, S. J. McNicholas, F. R. Manby, W. Meyer, M. E. Mura, A. Nicklass, P. Palmieri, R. Pitzer, G. Rauhut, M. Schtz, H. Stoll, A. J. Stone, R. Tarroni, and T. Thorsteinsson, MOLPRO 2000.1; University of Birmingham, Birmingham, (1999).Google Scholar
  11. 12.
    J. A. Pople, P. M. W. Gill, and N. C. Handy, Int. J. Quant. Chem. 56, 303 (1995).CrossRefGoogle Scholar
  12. 13.
    Indeed, DiLabio et al. have successfully used restricted-open-shell DFT methods to obtain bond dissociation energies: G. A. DiLabio, D. A. Pratt, A. D. LoFaro, and J. S. Wright, J. Phys. Chem. A 103, 1653 (1999); D. A. Pratt, J. S. Wright, and K. U. Ingold, J. Am. Chem. Soc. 121, 4877 (1999); G. A. DiLabio and D. A. Pratt, J. Phys. Chem. A 104, 1938 (2000).Google Scholar
  13. 14.
    L. A. Curtiss, K. Raghavachari, P. C. Redfern, V. Rassolov, and J. A. Pople, J. Chem. Phys. 109, 7764 (1998).Google Scholar
  14. 15.
    J. W. Ochterski, G. A. Petersson, and J. J. A. Montgomery, J. Chem. Phys. 104, 2598 (1996).CrossRefGoogle Scholar
  15. 16.
    J. M. L. Martin and G. de Oliveira, J. Chem. Phys. 111, 1843 (1999); J. M. L. Martin, Chem. Phys. Lett. 310, 271 (1999).Google Scholar
  16. 17.
    L. A. Curtiss, K. Raghavachari, G. W. Trucks, and J. A. Pople, J. Chem. Phys. 94, 7221 (1991).CrossRefGoogle Scholar
  17. 18.
    B. J. Smith and L. Radom, J. Phys. Chem. 99, 6468 (1995); L. A. Curtiss, P. C. Redfern, B. J. Smith, and L. Radom, J. Chem. Phys. 104, 5148 (1996).Google Scholar
  18. 19.
    L. A. Curtiss, P. C. Redfern, K. Raghavachari, V. Rassolov, and J. A. Pople, J. Chem. Phys. 110, 4703 (1999).CrossRefGoogle Scholar
  19. 20.
    J. A. Montgomery, Jr., M. J. Frisch, J. W. Ochterski, and G. A. Petersson, J. Chem. Phys. 110, 2822 (1999).CrossRefGoogle Scholar
  20. 21.
    C. J. Parkinson, P. M. Mayer, and L. Radom, Theor. Chem. Acc. 102, 92 (1999).Google Scholar
  21. 22.
    D. J. Henry, C. J. Parkinson, and L. Radom, to be published.Google Scholar
  22. 23.
    D. J. Henry, C. J. Parkinson, P. M. Mayer, and L. Radom, J. Phys. Chem., in press.Google Scholar
  23. 24.
    Some of these features are also incorporated in the G2M procedures of Morokuma and co-workers: A. M. Mebel, K. Morokuma, and M. C. Lin, J. Chem. Phys. 103, 7414 (1995).Google Scholar
  24. 25.
    P. M. Mayer, C. J. Parkinson, D. M. Smith, and L. Radom, J. Chem. Phys. 108, 604 (1998); P. M. Mayer, C. J. Parkinson, D. M. Smith, and L. Radom, J. Chem. Phys. 108, 9598 (1998).Google Scholar
  25. 26.
    NIST-JANAF Thermochemical Tables, Fourth Edition, J. Phys. Chem. Ref. Data, Monograph No. 9, M. W. Chase, Jr. (Ed.), (1998).Google Scholar
  26. 27.
    Landolt-Börnstein, New Series, Structure Data of Free Polyatomic Molecules, K. Kuchitsu (Ed.), Springer, New York (1998–9).Google Scholar
  27. 29.
    J. M. L. Martin, J. Chem. Phys. 100, 8186 (1994).Google Scholar
  28. 30.
    J. M. L. Martin, J. El-Yazal, and J-P. Franois, Mol. Phys. 86, 1437 (1995).Google Scholar
  29. 31.
    D. J. Tozer, N. C. Handy, R. D. Amos, J. A. Pople, R. H. Nobes, Y. Xie, and H. F. Schaefer III, Mol. Phys. 79, 777 (1993).Google Scholar
  30. 32.
    See for example: Y. Fan, in Encyclopedia of Computational Chemistry, P. v. R. Schleyer, N. L. Allinger, T. Clark, J. Gasteiger, P. Kollman, H. F. Schaefer III, and P. R. Shreiner (Eds.), Wiley, Chichester (1998), p. 1217; N. L. Allinger, in Energetics of Stable Molecules and Reactive Intermediates, NATO ASI Series C, Vol. 535, M. E. Minas da Piedade (Ed.), Kluwer Academic, Dordecht, The Netherlands (1999), p. 417.Google Scholar
  31. 33.
    See for example: A. Nicolaides, A. Rauk, M. N. Glukhovtsev, and L. Radom, J. Phys. Chem. 100, 17460 (1996).CrossRefGoogle Scholar
  32. 34.
    C. J. Parkinson, P. M. Mayer, and L. Radom, J. Chem. Soc., Perkin Trans. 2, 2305 (1999).Google Scholar
  33. 35.
    S. G. Lias, J. E. Bartmess, J. F. Liebman, J. L. Holmes, R. D. Levin and W. G. Mallard, J. Phys. Chem. Ref. Data. Suppl. 1, 17 (1988); K. P. Huber and G. Herzberg, Molecular Spectra and Molecular Structure. IV. Constants of Diatomic Molecules, Van Nostrand Reinhold Co., Princeton (1979).Google Scholar
  34. 37.
    CRC Handbook of Chemistry and Physics, 80th Edition, D. R. Lide (Ed.), CRC Press, Boca Raton (2000); S. Dóbé, T. Bérces, T. Turányi, F. Márta, J. Grussdorf, F. Temps, and H. G. Wagner, J. Phys. Chem.100, 19864 (1996); J. A. Seetula, Phys. Chem. Chem. Phys.1, 4721 (1999); M. S. Robinson, M. L. Polak, V. M. Bierbaum, C. H. DePuy, and W. C. Lineberger, J. Am. Chem. Soc.117, 6766 (1995); P. G. Wenthold and R. R. Squires, J. Am. Chem. Soc.116, 11890 (1994); J. L. Holmes, F. P. Lossing, and P. M. Mayer, J. Am. Chem. Soc.113, 9723 (1991); R. D. Lafleur, B. Szatary, and T. Baer, J. Phys. Chem.A 104, 1450 (2000).Google Scholar
  35. 38.
    D. J. Henry and L. Radom, to be published.Google Scholar
  36. 40.
    H. Fischer and L. Radom, Angew. Chem., Int. Ed. Engl., in press.Google Scholar
  37. 41.
    M. W. Wong and L. Radom, J. Phys. Chem. 99, 8582 (1995); M. W. Wong and L. Radom, J. Phys. Chem. 102, 2237 (1998); D. J. Henry, M. W. Wong, and L. Radom, to be published.Google Scholar
  38. 42.
    T. Zytowski and H. Fischer, J. Am. Chem. Soc. 118, 437 (1996); T. Zytowski and H. Fischer, J. Am. Chem. Soc. 119, 12869 (1997).CrossRefGoogle Scholar
  39. 43.
    J. A. Kerr, in Free Radicals, J. Kochi (Ed.), Wiley, New York (1972), p. 1; P. M. Holt and J. A. Kerr, Int. J. Chem. Kinet. 9, 185 (1977); D. L. Baulch, C. J. Cobos, R. A. Cox, C. Esser, P. Frank, T. Just, J. A. Kerr, M. J. Pilling, J. Troe, R. W. Walker, and J. Warnatz, J. Phys. Chem. Ref. Data. 21, 411 (1992); D. L. Baulch, C. J. Cobos, R. A. Cox, C. Esser, P. Frank, T. Just, J. A. Kerr, M. J. Pilling, J. Troe, R. W. Walker, and J. Warnatz, J. Phys. Chem. Ref. Data. 23, 847 (1994).Google Scholar
  40. 44.
    See for example: J. I. Steinfeld, J. S. Francisco, and W. L. Hase, Chemical Kinetics and Dynamics, Prentice Hall, New Jersey (1989).Google Scholar
  41. 45.
    J. Q. Wu and H. Fischer, Int. J. Chem. Kinet. 27, 167 (1995).CrossRefGoogle Scholar
  42. 46.
    J. Q. Wu, I. Beranek, and H. Fischer, Helv. Chim. Acta. 78, 194 (1995).CrossRefGoogle Scholar
  43. 47.
    F. N. Martinez, H. B. Schlegel, and M. Newcomb, J. Org. Chem. 61, 8547 (1996).Google Scholar
  44. 48.
    A. L. J. Beckwith and V. Bowry, J. Am. Chem. Soc. 116, 2710 (1994).CrossRefGoogle Scholar
  45. 49.
    D. M. Smith, A. Nicolaides, B. T. Golding, and L. Radom, J. Am. Chem. Soc. 120, 10223 (1998).Google Scholar
  46. 50.
    M. Newcomb and A. G. Glenn, J. Am. Chem. Soc. 111, 275 (1989).Google Scholar

Copyright information

© Kluwer Academic Publishers 2001

Authors and Affiliations

  • David J. Henry
    • 1
  • Leo Radom
    • 1
  1. 1.Research School of ChemistryAustralian National UniversityCanberraAustralia

Personalised recommendations