Advertisement

Complete Basis Set Models for Chemical Reactivity: from the Helium Atom to Enzyme Kinetics

  • George A. Petersson
Part of the Understanding Chemical Reactivity book series (UCRE, volume 22)

Summary

Pair natural orbital extrapolations to the complete basis set limit provide the foundation for a sequence of cost-effective CBS models. The current models: CBS-QCI/APNO, CBS-QB3, and CBS-4M, are applicable to species with 5, 10, and 20 non-hydrogen atoms, and are reliable to ca. 0.5, 1.0, and 2.0 kcal/mol respectively. These methods are applicable to transition states for chemical reactions with the IRCMax procedure. The ZC-VTST CBS-QCI/APNO model is capable of quantitative predictions of absolute rate constants. A double extrapolation promises a new generation of significantly more accurate and reliable models that will no longer require empirical corrections. The Δ5-ketosteroid isomerasecatalyzed conversion of Δ5 - to Δ4-androstene-3, 17-dione provided a case study for the extension of such high-accuracy methods to enzyme kinetics. The impact that high-accuracy computational quantum chemistry is currently having on combustion chemistry will soon be extended to biology. This is an exciting time for computational science.

Keywords

Correlation Energy Intrinsic Reaction Coordinate Complete Basis Absolute Rate Constant ONIOM Calculation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    G. A. Petersson, Theor. Chem. Acc. 103, 190 (2000).Google Scholar
  2. 2.
    K. K. Irikura and D. J. Frurip (Ed.), Computational Thermochemistry, ACS Symposium Series 677, American Chemical Society, Washington, D. C. (1998).Google Scholar
  3. 3.
    R. J. Bartlett and G. D. Purvis, Int. J. Quant. Chem. 14, 516 (1978); G. D. Purvis and R. J. Bartlett, J. Chem. Phys. 76, 1910 (1982).CrossRefGoogle Scholar
  4. 4.
    J. A. Pople, M. Head-Gordon, and K. Raghavachari, J. Chem. Phys. 87, 5968 (1987); K. Raghavachari, G. W. Trucks, J. A. Pople, and M. Head-Gordon, Chem. Phys. Lett. 157, 479 (1989).CrossRefGoogle Scholar
  5. 5.
    J. M. L. Martin and G. de Olivera, J. Chem. Phys. 111, 1843 (1999).Google Scholar
  6. 6.
    C. Schwartz, Phys. Rev. 126, 1015 (1962).CrossRefGoogle Scholar
  7. 7.
    C. Schwartz, in Methods in Computational Physics, Vol. 2, B. Alder, S. Fernbach, M. Rotenberg (eds.), Academic, New York (1963).Google Scholar
  8. 8.
    M. R. Nyden and G. A. Petersson, J. Chem. Phys. 75, 1843 (1981).Google Scholar
  9. 9.
    G. A. Petersson and M. R. Nyden, J. Chem. Phys. 75, 3423 (1981).Google Scholar
  10. 10.
    G.A. Petersson and S. L. Licht, J. Chem. Phys. 75, 4556 (1981).Google Scholar
  11. 11.
    F. B. Brown and D. G. Truhlar, Chem. Phys. Lett. 117, 307 (1985).Google Scholar
  12. 12.
    T. H. Dunning, Jr., J. Chem. Phys. 90, 1007 (1989).CrossRefGoogle Scholar
  13. 13.
    P. E. M. Siegbahn, M. R. A. Blomberg, and M. Svensson, Chem. Phys. Lett. 223, 35 (1994).CrossRefGoogle Scholar
  14. 14.
    P. O. Löwdin, Phys. Rev. 97, 1474 (1955).Google Scholar
  15. 15.
    F. W. Byron, Jr., and C. J. Joachain, Phys Rev. 146, 1 (1966).CrossRefGoogle Scholar
  16. 16.
    F. W. Byron, Jr., and C. J. Joachain, Phys Rev. 157, 7 (1967).Google Scholar
  17. 17.
    C. Møller and M. S. Plesset, Phys Rev. 46, 618 (1934).Google Scholar
  18. 18.
    C. F. Bunge, Theor. Chim. Acta (Berlin) 16, 126 (1970).CrossRefGoogle Scholar
  19. 19.
    K. Jankowski and P. Malinowski, Chem. Phys. Lett. 54, 68 (1978); K. Jankowski, P. Malinowski, and M. Polasik, J. Phys. B 12, 3157 (1979); K. Jankowski, and P. Malinowski, Phys. Rev. A 21, 45 (1980); K. Jankowski, P. Malinowski, and M. Polasik, Phys. Rev. A 21, 51 (1980).CrossRefGoogle Scholar
  20. 20.
    J. W. Ochterski, G. A. Petersson, and J. A. Montgomery, Jr., J. Chem. Phys. 104, 2598 (1996).CrossRefGoogle Scholar
  21. 21.
    G. A. Petersson and M. Braunstein, J. Chem. Phys. 83, 5129 (1985).Google Scholar
  22. 22.
    J. A. Montgomery, Jr., J. W. Ochterski, and G. A. Petersson, J. Chem. Phys. 101, 5900 (1994).CrossRefGoogle Scholar
  23. 23.
    J. A. Montgomery, Jr., M. J. Frisch, J. W. Ochterski, and G. A. Petersson, J. Chem. Phys. 110, 2822 (1999).CrossRefGoogle Scholar
  24. 24.
    J. A. Montgomery, Jr., M. J. Frisch, J. W. Ochterski, and G. A. Petersson, J. Chem. Phys. 112, 6532 (2000).CrossRefGoogle Scholar
  25. 25.
    Gaussian 98, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, V. G. Zakrzewski, J. A. Montgomery, Jr., R. E. Stratmann, J. C. Burant, S. Dapprich, J. M. Millam, A. D. Daniels, K. N. Kudin, M. C. Strain, O. Farkas, J. Tomasi, V. Barone, M. Cossi, R. Cammi, B. Mennucci, C. Pomelli, C. Adamo, S. Clifford, J. Ochterski, G. A. Petersson, P. Y. Ayala, Q. Cui, K. Morokuma, D. K. Malick, A. D. Rabuck, K. Raghavachari, J. B. Foresman, J. V. Ortiz, A. G. Baboul, J. Cioslowski, B. B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R. Gomperts, R. L. Martin, D. J. Fox, T. Keith, M. A. Al-Laham, C. Y. Peng, A. Nanayakkara, M. Challacombe, P. M. W. Gill, B. Johnson, W. Chen, M. W. Wong, J. L. Andres, C. Gonzalez, M. Head-Gordon, E. S. Replogle, and J. A. Pople, Gaussian, Inc., Pittsburgh PA, 1998.Google Scholar
  26. 27.
    L. A. Curtiss, C. Jones, G. W. Trucks, K. Raghavachari, and J. A. Pople, J. Chem. Phys. 93, 2537 (1990).Google Scholar
  27. 28.
    P. Pulay, in Applications of Electronic Structure Theory, H. F. Schaefer, III (Ed.), Plenum, New York (1977), p. 153.Google Scholar
  28. 29.
    J. A. Pople, R. Krishnan, H. B. Schlegel, and J. S. Binkley, Int. J. Quant. Chem. Symp. 13, 325 (1979).Google Scholar
  29. 30.
    H. B. Schlegel, J. Comput. Chem. 3, 214 (1982).CrossRefGoogle Scholar
  30. 31.
    N. C. Handy and H. F. Schaefer, III, J. Chem. Phys. 81, 5031 (1984).CrossRefGoogle Scholar
  31. 32.
    H. B. Schlegel, J. S. Binkley, and J. A. Pople, J. Chem. Phys. 80, 1976 (1984).CrossRefGoogle Scholar
  32. 33.
    M. J. Frisch, M. Head-Gordon, and J. A. Pople, Chem. Phys. Lett. 166, 275; (1990); M. J. Frisch, M. Head-Gordon, and J. A. Pople, Chem. Phys. Lett. 166, 281 (1990)Google Scholar
  33. 34.
    B. G. Johnson and M. J. Frisch, J. Chem. Phys. 100, 7429 (1994).Google Scholar
  34. 35.
    M. Head-Gordon and T. Head-Gordon, Chem. Phys. Lett. 220, 122 (1994).CrossRefGoogle Scholar
  35. 36.
    C. Peng and H. B. Schlegel, Israel J. Chem. 33, 449 (1994).Google Scholar
  36. 37.
    D. G. Truhlar and A. Kuppermann, J. Am. Chem. Soc. 93, 1840 (1971).Google Scholar
  37. 38.
    C. Gonzalez and H. B. Schlegel, J. Phys. Chem. 90, 2154 (1989).Google Scholar
  38. 39.
    J. C. Corchado, E J. Olivares del Valle, and J. Espinosa-Garcia, J. Phys. Chem. 97, 9129 (1993).CrossRefGoogle Scholar
  39. 40.
    D. K. Malick, G. A. Petersson, and J. A. Montgomery, Jr., J. Chem. Phys. 108, 5704 (1998).CrossRefGoogle Scholar
  40. 41.
    J. B. Foresman and A. E. Frisch, Exploring Chemistry with Electronic Structure Methods, 2nd ed., Gaussian, Inc., Pittsburgh, PA (1996).Google Scholar
  41. 42.
    D. G. Truhlar, J. Chem. Phys. 53, 2041 (1970).CrossRefGoogle Scholar
  42. 43.
    B. C. Garrett and D. G. Truhlar, J. Phys. Chem. 83, 1052 (1979); B. C. Garrett and D. G. Truhlar, J. Phys. Chem. 83, 1079 (1979).Google Scholar
  43. 45.
    W. Kutzelnigg, Theor. Chim. Acta 68, 445 (1985); W. Klopper and W. Kutzelnigg, Chem. Phys. Lett. 134, 17 (1987); W. Klopper and W. Kutzelnigg, Stud. Phys. Theor. Chem. 62, 45 (1989).Google Scholar
  44. 46.
    J. Noga, W. Klopper, and W. Kutzelnigg, in Recent Advances in Coupled Cluster Methods R. J. Bartlett (Ed.), World Scientific, Singapore (1997), p. 1.Google Scholar
  45. 47.
    W. Klopper, in The Encyclopedia of Computational Chemistry, P. v. R. Schleyer, et al. (eds.), Wiley, Chichester, (1998), p. 2351.Google Scholar
  46. 48.
    W. Klopper, K. L. Bak, P. Jørgensen, J. Olsen, and T. Helgaker, J. Phys. B 32, R103 (1999).Google Scholar
  47. 49.
    R. A. Kendall, T. H. Dunning, Jr., and R. J. Harrison, J. Chem. Phys. 96, 6796 (1992); D. E. Woon and T. H. Dunning, Jr., J. Chem. Phys. 98, 1358 (1993); D. E. Woon and T. H. Dunning, Jr., J. Chem. Phys. 100, 2975 (1994); D. E. Woon and T. H. Dunning, Jr., J. Chem. Phys. 103, 4572 (1995); A. K. Wilson, T. van Mourik, and T. H. Dunning, Jr., J. Mol. Struct. (Theochem) 338, 339 (1996); D. E. Woon, K. A. Peterson, and T. H. Dunning, Jr., J. Chem. Phys. 109, 2233 (1998).CrossRefGoogle Scholar
  48. 50.
    G. A. Petersson and M. J. Frisch, J. Phys. Chem. 104, 2183 (2000).Google Scholar
  49. 51.
    D. Feller, J. Chem. Phys. 96, 6104; D. Feller, J. Chem. Phys. 98, 7059 (1993).Google Scholar
  50. 52.
    K. A. Peterson, D. E. Woon, and T. H. Dunning, Jr., J. Chem. Phys. 100, 7410 (1994).CrossRefGoogle Scholar
  51. 53.
    A. K. Wilson and T.H. Dunning, Jr., J. Chem. Phys. 106, 8718 (1997).CrossRefGoogle Scholar
  52. 54.
    F. B. van Duijneveldt, IBM Publ. RI 945, Yorktown Hts., New York (1971).Google Scholar
  53. 55.
    J. M. L. Martin, Theor. Chem. Acc. 97, 227 (1997).Google Scholar
  54. 56.
    M. Svensson, S. Humbel, R. D. J. Froese, T. Matsubara, S. Sieber, and K. Morokuma, J. Phys. Chem. 100, 19357 (1996).CrossRefGoogle Scholar
  55. 57.
    T. Vreven and K. Morokuma, J. Chem. Phys. 113, 2969 (2000).CrossRefGoogle Scholar
  56. 58.
    M. Cossi, V. Barone, R. Cammi, and J. Tomasi, Chem. Phys. Lett. 255, 327 (1996).CrossRefGoogle Scholar
  57. 59.
    V. Barone, M. Cossi, and J. Tomasi, J. Chem. Phys. 107, 3210 (1997).CrossRefGoogle Scholar
  58. 60.
    V. Barone, M. Cossi, and J. Tomasi, J. Comp. Chem. 19, 404 (1998).Google Scholar
  59. 61.
    T. C. Eames, D. C. Hawkinson, and R. M. Pollack, J. Am. Chem. Soc. 112, 1996 (1990).CrossRefGoogle Scholar
  60. 62.
    L. Xue, A Kuliopulos, A. S. Mildvan, and P. Talalay, Biochemistry 30, 4991 (1991).Google Scholar
  61. 63.
    C. M. Holman and W. F. Bebisek, Biochemistry 33, 2672 (1994).Google Scholar
  62. 64.
    G. Choi, N. C. Ha, S. W. Kim, D. H. Kim, S. Park, B. H. Oh, and K. Y. Choi, Biochemistry 39, 903 (2000).CrossRefGoogle Scholar
  63. 65.
    A. K. Rappé, C. J. Casewit, K. S. Colwell, W. A. Goddard III and W. M. Skiff, J. Am. Chem. Soc. 114, 10024 (1992).Google Scholar
  64. 66.
    A. K. Rappé and W. A. Goddard III, J. Phys. Chem. 95, 3358 (1991).Google Scholar
  65. 67.
    C. Peng and H. B. Schlegel, Israel J. Chem. 33, 449 (1994).Google Scholar
  66. 68.
    K. Oh, S. Cha, D. Kim, H. Cho, N. Ha, G. Choi, J. Lee, P. Tarakeshwar, H. Son, K. Choi, B. Oh, and K. Kim, Biochemistry 39, 13891 (2000).Google Scholar
  67. 69.
    J. M. Schwab and B. S. Henderson, Chem. Rev. 90, 1203 (1990).CrossRefGoogle Scholar
  68. 70.
    ”The most beautiful thing we can experience is the mysterious. It is the source of all true art and science.” Albert Einstein in The Expanded Quotable Einstein, collected and edited by A. Calaprice, Princeton Univ. Press, Princeton, N. J. (2000).Google Scholar

Copyright information

© Kluwer Academic Publishers 2001

Authors and Affiliations

  • George A. Petersson
    • 1
  1. 1.Hall-Atwater Laboratories of ChemistryWesleyan UniversityMiddletownUSA

Personalised recommendations