Advertisement

W1 and W2 Theories, and Their Variants: Thermochemistry in the kJ/mol Accuracy Range

  • Jan M. L. Martin
  • S. Parthiban
Part of the Understanding Chemical Reactivity book series (UCRE, volume 22)

Keywords

Electron Affinity Proton Affinity Mean Absolute Deviation Scalar Relativistic Effect Valence Correlation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J. M. L. Martin and G. de Oliveira, J. Chem. Phys. 111, 1843 (1999).Google Scholar
  2. 2.
    T. H. Dunning Jr., J. Chem. Phys. 90, 1007 (1989).CrossRefGoogle Scholar
  3. 3.
    T. H. Dunning Jr., K. A. Peterson, and D. E. Woon, “Correlation consistent basis sets for molecular calculations”, in Encyclopedia of Computational Chemistry, P. von Ragué Schleyer (Ed.), Wiley & Sons, Chichester, UK (1998).Google Scholar
  4. 4.
    J. M. L. Martin, J. Chem. Phys. 97, 5012 (1992).Google Scholar
  5. 5.
    R. A. Kendall, T. H. Dunning, and R. J. Harrison, J. Chem. Phys. 96, 6796 (1992).CrossRefGoogle Scholar
  6. 6.
    J. E. Del Bene, J. Phys. Chem. 97, 107 (1993).Google Scholar
  7. 7.
    J. M. L. Martin and P. R. Taylor, Chem. Phys. Lett. 225, 473 (1994).CrossRefGoogle Scholar
  8. 8.
    J. M. L. Martin, Chem. Phys. Lett. 242, 343 (1995).CrossRefGoogle Scholar
  9. 9.
    D. E. Woon and T. H. Dunning, Jr., J. Chem. Phys. 103, 4572 (1995).CrossRefGoogle Scholar
  10. 10.
    J. M. L. Martin and O. Uzan, Chem. Phys. Lett. 282, 19 (1998).CrossRefGoogle Scholar
  11. 11.
    J. M. L. Martin, J. Chem. Phys. 108, 2791 (1998).Google Scholar
  12. 12.
    T. H. Dunning Jr., K. A. Peterson, and A. K. Wilson, J. Chem. Phys., in press (preprint communicated to the authors).Google Scholar
  13. 13.
    A. D. Becke, J. Chem. Phys. 98, 5648 (1993).Google Scholar
  14. 14.
    C. Lee, W. Yang, and R. G. Parr, Phys. Rev. B 37, 785 (1988).Google Scholar
  15. 15.
    J. M. L. Martin, J. El-Yazal, and J. P. François, Mol. Phys. 86, 1437 (1995).Google Scholar
  16. 16.
    J. M. L. Martin, Spectrochim. Acta A 55, 709 (1999).Google Scholar
  17. 17.
    J. M. L. Martin, J. Chem. Phys. 100, 8186 (1994).Google Scholar
  18. 18.
    J. M. L. Martin, Chem. Phys. Lett. 292, 411 (1998).CrossRefGoogle Scholar
  19. 19.
    F. Jensen, J. Chem. Phys. 110, 6601 (1999).CrossRefGoogle Scholar
  20. 20.
    F. Jensen, Theor. Chem. Acc. 104, 484 (2000).Google Scholar
  21. 21.
    J. M. L. Martin and P. R. Taylor, Mol. Phys. 96, 681 (1999).CrossRefGoogle Scholar
  22. 22.
    D. Feller, J. Chem. Phys. 96, 6104 (1992).CrossRefGoogle Scholar
  23. 23.
    G. A. Petersson, A. Bennett, T. G. Tensfeldt, M. A. Al-Laham, W. A. Shirley, and J. Mantzaris, J. Chem. Phys. 89, 2193 (1988).CrossRefGoogle Scholar
  24. 24.
    M. Abramowitz and I. A. Stegun, Handbook of mathematical functions, Dover, New York (1972).Google Scholar
  25. 25.
    J. M. L. Martin and P. R. Taylor, J. Chem. Phys. 106, 8620 (1997).CrossRefGoogle Scholar
  26. 26.
    S. Parthiban and J. M. L. Martin, J. Chem. Phys. 114, xxxx (2001).CrossRefGoogle Scholar
  27. 27.
    C. W. Bauschlicher Jr. and H. Partridge, Chem. Phys. Lett. 240, 533 (1995)Google Scholar
  28. 28.
    J. M. L. Martin, Chem. Phys. Lett. 310, 271 (1999).CrossRefGoogle Scholar
  29. 29.
    J. M. L. Martin, unpublished.Google Scholar
  30. 30.
    G. D. Purvis III and R. J. Bartlett, J. Chem. Phys. 76, 1910 (1982).CrossRefGoogle Scholar
  31. 31.
    C. Schwartz, in Methods in Computational Physics 2 B. J. Alder (Ed.), Academic Press, New York (1963).Google Scholar
  32. 32.
    R. N. Hill, J. Chem. Phys. 83, 1173 (1985).CrossRefGoogle Scholar
  33. 33.
    W. Kutzelnigg and J. D. Morgan III, J. Chem. Phys. 96, 4484 (1992); erratum 97, 8821 (1992).CrossRefGoogle Scholar
  34. 34.
    J. M. L. Martin, Chem. Phys. Lett. 259, 669 (1996).Google Scholar
  35. 35.
    A. Halkier, T. Helgaker, P. Jørgensen, W. Klopper, H. Koch, J. Olsen, and A. K. Wilson, Chem. Phys. Lett. 286, 243 (1998).CrossRefGoogle Scholar
  36. 36.
    T. J. Lee and G. E. Scuseria, in Quantum mechanical electronic structure calculations with chemical accuracy, S. R. Langhoff (Ed.), Kluwer, Dordrecht (The Netherlands) (1995) p. 47; P. R. Taylor, in Lecture Notes in Quantum Chemistry II, B. O. Roos (Ed.), Lecture Notes in Chemistry 64, Springer, Berlin (1994) p. 125; R. J. Bartlett and J. F. Stanton, in Reviews in Computational Chemistry, Vol. V, K. B. Lipkowitz and D. B. Boyd (Eds.), VCH, New York (1994) p. 65.Google Scholar
  37. 37.
    K. Raghavachari, G. W. Trucks, J. A. Pople, and M. Head-Gordon, Chem. Phys. Lett. 157, 479 (1989); for alternative implementations see: A. P. Rendell, T. J. Lee and A. Komornicki, Chem. Phys. Lett. 178, 462 (1991); G. E. Scuseria, Chem. Phys. Lett. 176, 27 (1991); P. J. Knowles, C. Hampel, and H. J. Werner, J. Chem. Phys. 99, 5219 (1993); erratum 112, 3106 (2000); J. D. Watts, J. Gauss, and R. J. Bartlett, J. Chem. Phys. 98, 8718 (1993).CrossRefGoogle Scholar
  38. 38.
    Y. He, Z. He, and D. Cremer, Theor. Chem. Acc. 105, 182 (2001).Google Scholar
  39. 39.
    W. Klopper, J. Noga, H. Koch, and T. Helgaker, Theor. Chem. Acc. 97, 164 (1997).Google Scholar
  40. 40.
    H. Koch, A. Sanchez de Meras, T. Helgaker, and O. Christiansen, J. Chem. Phys. 104, 4157 (1996) and subsequent papers.Google Scholar
  41. 41.
    M. Schütz, R. Lindh, and H.-J. Werner, Mol. Phys. 96, 719 (1999).Google Scholar
  42. 42.
    C. W. Bauschlicher Jr., S. R. Langhoff, and P. R. Taylor, J. Chem. Phys. 88, 2540 (1988).Google Scholar
  43. 43.
    J. M. L. Martin, A. Sundermann, P. L. Fast, and D. G. Truhlar, J. Chem. Phys. 113, 1348 (2000).CrossRefGoogle Scholar
  44. 44.
    P. Pyykkö, Chem. Rev. 88, 563 (1988); M. Reiher and B. A. Hess, in Modern methods and algorithms of quantum chemistry, J. Grotendorst (Ed.) NIC Series Vol. 1, Forschungszentrum Jülich (2000).Google Scholar
  45. 45.
    G. de Oliveira, J. M. L. Martin, F. de Proft, and P. Geerlings, Phys. Rev. A 60, 1034 (1999).Google Scholar
  46. 46.
    R. D. Cowan and M. Griffin, J. Opt. Soc. Am. 66, 1010 (1976).CrossRefGoogle Scholar
  47. 47.
    R.L. Martin J. Phys. Chem. 87, 750 (1983).CrossRefGoogle Scholar
  48. 48.
    C. W. Bauschlicher Jr., J. Phys. Chem. A 104, 2281 (2000).Google Scholar
  49. 49.
    C. W. Bauschlicher Jr., Theor. Chem. Acc. 101, 421 (1999).Google Scholar
  50. 50.
    A. Nicklass, K. A. Peterson, A. Berning, H.-J. Werner, and P. J. Knowles, J. Chem. Phys. 112, 5624 (2000).CrossRefGoogle Scholar
  51. 51.
    R. S. Grev, C. L. Janssen, and H. F. Schaefer III, J. Chem. Phys. 95, 5128 (1991).CrossRefGoogle Scholar
  52. 52.
    A. P. Scott and L. Radom, J. Phys. Chem. 100, 16502 (1996).Google Scholar
  53. 53.
    D. Feller and D. A. Dixon, J. Phys. Chem. A 104, 3048 (2000).Google Scholar
  54. 54.
    J. M. L. Martin, T. J. Lee, P. R. Taylor, and J. P. François, J. Chem. Phys. 103, 2589 (1995); J. M. L. Martin and P. R. Taylor, Chem. Phys. Lett. 248, 336 (1996).CrossRefGoogle Scholar
  55. 55.
    E. Miani, E. Cané, P. Palmieri, A. Trombetti, and N. C. Handy, J. Chem. Phys. 112, 248 (2000).CrossRefGoogle Scholar
  56. 56.
    J. M. L. Martin, P. R. Taylor, and T. J. Lee, Chem. Phys. Lett. 275, 414 (1997).CrossRefGoogle Scholar
  57. 57.
    G. de Oliveira, J. M. L. Martin, I. K. C. Silwal, and J. F. Liebman, J. Comput. Chem., in press (2001) [Paul von Ragué Schleyer festschrift].Google Scholar
  58. 58.
    A. D. Becke, J. Chem. Phys. 98, 1372 (1993).Google Scholar
  59. 59.
    B. J. Lynch, P. L. Fast, M. Harris, and D. G. Truhlar, J. Phys. Chem. A 104, 4811 (2000).Google Scholar
  60. 60.
    A. Nicklass and K. A. Peterson, Theor. Chem. Acc. 100, 103 (1998).Google Scholar
  61. 61.
    W. Müller, J. Flesch, and W. Meyer, J. Chem. Phys. 80, 3297 (1984); P. Fuentealba, H. Preuss, H. Stoll, and L. von Szentpály, Chem. Phys. Lett. 89, 418 (1982). P. Schwerdtfeger and H. Silberbach, Phys. Rev. A 37, 2834 (1988); erratum 42, 665 (1990).Google Scholar
  62. 62.
    G. S. Kedziora, J. A. Pople, V. A. Rassolov, M. A. Ratner, P. C. Redfern, and L. A. Curtiss, J. Chem. Phys. 110, 7123 (1999).CrossRefGoogle Scholar
  63. 64.
    T. J. Lee and P. R. Taylor, Int. J. Quantum Chem. Symp. 23, 199 (1989); for a generalization to open-shell cases, see D. Jayatilaka and T. J. Lee, J. Chem. Phys 98, 9734 (1993).Google Scholar
  64. 65.
    M. R. Hoffmann and H. F. Schaefer III, Adv. Quantum Chem. 18, 207 (1986); J. Noga and R. J. Bartlett, J. Chem. Phys 86, 7041 (1987); erratum 89, 3401 (1988); G. E. Scuseria and H. F. Schaefer III, Chem. Phys. Lett. 152, 382 (1988).Google Scholar
  65. 66.
    K. L. Bak, P. Jørgensen, J. Olsen, T. Helgaker, and J. Gauss, Chem. Phys. Lett. 317, 116 (2000).CrossRefGoogle Scholar
  66. 67.
    J. M. L. Martin, Chem. Phys. Lett. 303, 399 (1999).CrossRefGoogle Scholar
  67. 68.
    J. M. L. Martin Spectrochim. Acta A 57, 875 (2001) [special issue on astrophysically important molecules].Google Scholar
  68. 69.
    J.D. Cox, D.D. Wagman, and V.A. Medvedev, CODATA key values for thermodynamics (Hemisphere, New York, 1989). [Data also available online at http://www.codata.org/codata/databases/keyl.html]Google Scholar
  69. 70.
    G. K. Johnson, J. Chem. Thermodyn. 18, 801 (1986).Google Scholar
  70. 71.
    K. P. Huber and G. Herzberg, Constants of diatomic molecules Van Nostrand Reinhold, New York (1979).Google Scholar
  71. 72.
    C. W. Bauschlicher Jr., J. M. L. Martin, and P. R. Taylor, J. Phys. Chem. A 103, 7715 (1999); see also J. M. L. Martin, and P. R. Taylor, J. Phys. Chem. A 102, 2995 (1998).Google Scholar
  72. 73.
    J. M. L. Martin, and P. R. Taylor, J. Phys. Chem. A 103, 4427 (1999).Google Scholar
  73. 74.
    D. F. Hildenbrand, personal communication quoted in Ref. 72.Google Scholar
  74. 75.
    E. Storms and B. Mueller, J. Phys. Chem. 81, 318 (1977).CrossRefGoogle Scholar
  75. 76.
    J.A. Ochterski, G.A. Petersson, and K.B. Wiberg, J. Am. Chem. Soc. 117, 11299 (1995).CrossRefGoogle Scholar
  76. 77.
    J. Baker, M. Muir, and J. Andzelm, J. Chem. Phys. 102, 2063 (1995).Google Scholar
  77. 78.
    J. Andzelm and P. R. Taylor, Chem. Phys. Lett. 237, 53 (1995).Google Scholar
  78. 79.
    C. Adamo and V. Barone, J. Chem. Phys. 108, 664 (1998).CrossRefGoogle Scholar
  79. 80.
    S. Parthiban, G. de Oliveira, and J. M. L. Martin, J. Phys. Chem. A 105, 895 (2001).Google Scholar
  80. 81.
    A. D. Becke, Phys. Rev. A 38, 3098 (1988); J. Chem. Phys. 88, 2547 (1988).Google Scholar
  81. 82.
    A. D. Boese, N. L. Doltsinis, N. C. Handy, and M. Sprik, J. Chem. Phys. 112, 1670 (2000); see also F. A. Hamprecht, A. J. Cohen, D. J. Tozer, and N. C. Handy, J. Chem. Phys. 109, 6264 (1998).CrossRefGoogle Scholar
  82. 83.
    M. N. Glukhovtsev, A. Pross, and L. Radom, J. Am. Chem. Soc. 117, 2024 (1995); J. Am. Chem. Soc. 118, 6273 (1996).Google Scholar
  83. 84.
    J. M. L. Martin and A. Sundermann, J. Chem. Phys. 114, 3408 (2001).Google Scholar
  84. 85.
    For a review see M. Dolg, in Modern methods and algorithms of quantum chemistry, J. Grotendorst (Ed.), NIC Series Vol. 1, John von Neumann-Institute for Computing, Forschungszentrum Jülich, Germany (2000).Google Scholar

Copyright information

© Kluwer Academic Publishers 2001

Authors and Affiliations

  • Jan M. L. Martin
    • 1
  • S. Parthiban
    • 1
  1. 1.Department of Organic ChemistryWeizmann Institute of ScienceRehovotIsrael

Personalised recommendations