Skip to main content

Abstract

Positronic compounds represent a unique family of systems whose chemical and physical properties are tightly related to the correlated motion of positrons and electrons. For this class of systems, standard ab initio quantum chemistry methods are often of little use in computing observables. Starting from this observation, we present quantum Monte Carlo (QMC) methods as an useful and accurate set of tools to study the leptonic structure of positronic atoms and molecules. Moreover, we show the information that can be routinely obtained from Monte Carlo simulations presenting specific examples and applications to atoms and molecules. Finally, an overview of the directions that we feel are worth pursuing is given.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. O. E. Mogensen, Positron annihilation in chemistry, Springer-Verlag, Berlin (1995).

    Google Scholar 

  2. R. Krause-Rehberg and H. S. Leipner, Positron annihilation in semiconductors, Springer-Verlag, Berlin (1999).

    Google Scholar 

  3. D. M. Schrader, in Recent advances in quantum Monte Carlo methods, edited by W. A. Lester, Jr., World Scientific Publishing, Singapore (1997).

    Google Scholar 

  4. M. Mella, G. Morosi, and D. Bressanini, J. Chem. Phys. 111, 108 (1999).

    Article  ADS  Google Scholar 

  5. A. Szabo and N. S. Ostlund, Modern quantum Chemistry, MacMillan Publishing Co., Inc., New York (1982).

    Google Scholar 

  6. Change Lee, Sov. Phys. JETP 6, 281 (1958).

    ADS  Google Scholar 

  7. P. E. Cade and A. Farazdel, J. Chem. Phys. 66, 2598 (1977).

    Article  ADS  Google Scholar 

  8. P. E. Cade and A. Farazdel, Chem. Phys. Lett. 47, 584 (1977).

    ADS  Google Scholar 

  9. A. J. Patrick and P. E. Cade, J. Chem. Phys. 75, 1893 (1981).

    Article  ADS  Google Scholar 

  10. H. A. Kurtz and K. D. Jordan, Int. J. Quantum Chem. 14, 747 (1978).

    Article  Google Scholar 

  11. H. A. Kurtz and K. D. Jordan, J. Chem. Phys. 72, 493 (1980).

    Article  ADS  Google Scholar 

  12. S. L. Saito and F. Sasaki, J. Chem. Phys. 102, 8040 (1995).

    ADS  Google Scholar 

  13. S. L. Saito Chem. Phys. Lett. 245, 54 (1995).

    Article  ADS  Google Scholar 

  14. M. Tachikawa, H. Sainowo, K. Iguchi, and K. Suzuki, J. Chem. Phys. 101, 5952 (1994).

    Google Scholar 

  15. K. Strasburger and H. Chojnacki, Chem. Phys. Lett. 241, 485 (1995).

    Article  ADS  Google Scholar 

  16. K. Strasburger, Chem. Phys. Lett. 253, 49 (1996).

    Article  ADS  Google Scholar 

  17. V. A. Dzuba, V. V. Flambaum, G. F. Gribakin, and C. Harabati, Phys. Rev. A 60, 3641 (1999).

    Article  ADS  Google Scholar 

  18. V. A. Dzuba, V. V. Flambaum, and C. Harabati, Phys. Rev. A 62, 042504 (2000).

    ADS  Google Scholar 

  19. M. W. J. Bromley, J. Mitroy, and G. G. Ryzhikh, Nucl. Instrum. Methods B 171, 47 (2000).

    Article  ADS  Google Scholar 

  20. M. W. J. Bromley and J. Mitroy, J. Phys. B 33, L325 (2000).

    Article  ADS  Google Scholar 

  21. K. Strasburger, J. Chem. Phys. 111, 10555 (1999).

    Article  ADS  Google Scholar 

  22. K. Strasburger, J. Chem. Phys. 114, 615 (2001).

    Article  ADS  Google Scholar 

  23. E. A. Hylleraas, Z. Phys. 54, 347 (1929).

    MATH  ADS  Google Scholar 

  24. T. Kato, Com. Pure. Appl. Math. 10, 151 (1957).

    MATH  Google Scholar 

  25. J. Zs. Mezei, J. Mitroy, R. G. Lovas, and K. Varga, submitted to Phys. Rev. A.

    Google Scholar 

  26. Z. Yan, J. F. Babb, A. Dalgarno, and G. W. F. Drake, Phys. Rev. A 54, 2824 (1996).

    ADS  Google Scholar 

  27. G. Büsse, H. Kleindsienst, and A. Lüchow, Int. J. Quantum Chem. 66, 241 (1998).

    Google Scholar 

  28. Y. K. Ho, Phys. Rev. A 34, 609 (1986).

    ADS  Google Scholar 

  29. A. M. Frolov and V. H. Smith, Jr., Phys. Rev. A 56, 2417 (1997).

    Article  ADS  Google Scholar 

  30. K. Strasburger, Int. J. Quantum Chem. 79, 243 (2000).

    Article  Google Scholar 

  31. S. F. Boyd, Proc. Roy. Soc. A 258, 402 (1960).

    ADS  Google Scholar 

  32. K. Singer, Proc. Roy. Soc. A 258, 412 (1960).

    MATH  ADS  Google Scholar 

  33. W. A. Lester and M. Krauss, J. Chem. Phys. 41, 1407 (1964).

    Article  ADS  Google Scholar 

  34. G. G. Ryzhikh, J. Mitroy, and K. Varga, J. Phys. B: At. Mol. Opt. Phys. 31, 3965 (1998).

    ADS  Google Scholar 

  35. W. Cencek and J. Rychlewski, J. Chem. Phys. 102, 2533 (1995).

    Article  ADS  Google Scholar 

  36. K. Varga and Y. Suzuki, Phys. Rev. A 53, 1907 (1996).

    Article  ADS  Google Scholar 

  37. G. G. Ryzhikh and J. Mitroy, Phys. Rev. Lett. 79, 4124 (1997).

    Article  ADS  Google Scholar 

  38. K. Strasburger and H. Chojnacki, J. Chem. Phys. 108, 3218 (1998).

    Article  ADS  Google Scholar 

  39. G. G. Ryzhikh and J. Mitroy, J. Phys. B 31, 4459 (1998).

    ADS  Google Scholar 

  40. J. Mitroy and G. G. Ryzhikh, J. Phys. B 32, 1375 (1999).

    ADS  Google Scholar 

  41. J. Mitroy and G. G. Ryzhikh, J. Phys. B 32, 3839 (1999).

    ADS  Google Scholar 

  42. M. J. Puska and R. M. Nieminen, Rev. Mod. Phys. 66, 841 (1994).

    Article  ADS  Google Scholar 

  43. A. D. Becke, J. Chem. Phys. 104, 1040 (1996).

    Article  ADS  Google Scholar 

  44. D. J. Tozer, V. E. Ingamells, and N. C. Handy, J. Chem. Phys. 105, 9200 (1996).

    Article  ADS  Google Scholar 

  45. R. M. Nieminen, E. Boronski, and L. Lantto, Phys. Rev. B 32, 1377 (1985).

    Article  ADS  Google Scholar 

  46. D. G. Kanhere, A. Kshirsagar, and V. Bhamre, Chem. Phys. Lett. 160, 526 (1989).

    Article  ADS  Google Scholar 

  47. T. Baruah, R. K. Pathak, and A. Kshirsagar, Phys. Rev. A 55, 1518 (1997).

    Article  ADS  Google Scholar 

  48. D. Bressanini, M. Mella, and G. Morosi, J. Chem. Phys. 108, 4756 (1998).

    Article  ADS  Google Scholar 

  49. K. Binder, Ed., Monte Carlo methods in Statistical Physics, vol. 1, Springer-Verlag, Berlin (1979).

    Google Scholar 

  50. K. Binder, Ed., Monte Carlo methods in Statistical Physics, vol. 2, Springer-Verlag, Berlin (1984).

    Google Scholar 

  51. B. L. Hammond, W. A. Lester, Jr., and P. J. Reynolds, Monte Carlo Methods in Ab Initio Quantum Chemistry, 1st ed., World Scientific, Singapore (1994).

    Google Scholar 

  52. A. Lüchow and J. B. Anderson, Annu. Rev. Phys. Chem. 51, 501 (2000).

    ADS  Google Scholar 

  53. J. B. Anderson, Rev. Comput. Chem. 13, 133 (1999).

    Google Scholar 

  54. D. Bressanini and P. J. Reynolds, Adv. Chem. Phys. Vol 105, 37 (1998).

    Google Scholar 

  55. M. H. Kalos and P. A. Whitlock, Monte Carlo methods: basics, Wiley-Interscience, New York (1986).

    MATH  Google Scholar 

  56. H. Gould and J. Tobochnik, An introduction to computer simulation methods, Addison-Wesley, Reading (1988).

    Google Scholar 

  57. I. N. Levine, Quantum Chemistry, 4th ed., Prentice-Hall, Englewood Cliffs, New Jersey (1991).

    Google Scholar 

  58. N. Metropolis, A. W. Rosenbluth, M. N. Rosenbluth, A. M. Teller, E. Teller, J. Phys. Chem. 21, 1087 (1953).

    Google Scholar 

  59. C. Le Sech and B. Silvi, Chem. Phys. 236, 77 (1998).

    ADS  Google Scholar 

  60. A. A. Frost, J. Chem. Phys. 41, 478 (1964).

    MathSciNet  ADS  Google Scholar 

  61. H. Conroy, J. Chem. Phys. 41, 1327 (1964).

    ADS  Google Scholar 

  62. C. J. Umrigar, K. G. Wilson, and J. K. Wilkins, Phys. Rev. Lett. 60, 1719 (1988).

    Article  ADS  Google Scholar 

  63. L. Bertini, D. Bressanini, M. Mella, and G. Morosi, Int. J. Quantum Chem. 74, 23 (1999).

    Article  Google Scholar 

  64. P. R. C. Kent, R. J. Needs, and G. Rajagopal, Phys. Rev. B 59, 12344 (1999).

    ADS  Google Scholar 

  65. M. Casalegno, M. Mella, D. Bressanini, and G. Morosi, unpublished results.

    Google Scholar 

  66. X. Lin, H. Zhang, and A. M. Rappe, J. Chem. Phys. 112, 2650 (2000).

    ADS  Google Scholar 

  67. A. Harju, B. Barbiellini, S. Siljamaki, and R. M. Nieminen, Phys. Rev. Lett. 79, 1073 (1997).

    Article  ADS  Google Scholar 

  68. M. D. Dewing, PhD Thesis (unpublished), http://xxx.sissa.it/abs/physics/0012030

  69. M. Snajdr and S. M. Rothstein, J. Chem. Phys. 112, 4935 (2000).

    Article  ADS  Google Scholar 

  70. R. Bianchi, D. Bressanini, P. Cremaschi, M. Mella, and G. Morosi, Int. J. Quantum Chem. 57, 321 (1996).

    Article  Google Scholar 

  71. C. J. Umrigar, M. P. Nightingale, and K. J. Runge, J. Chem. Phys. 99, 2865 (1993).

    Article  ADS  Google Scholar 

  72. A. Mushinski and M.P. Nightingale, J. Chem. Phys. 105, 6498 (1996).

    ADS  Google Scholar 

  73. M. Mella, G. Morosi, and D. Bressanini, Phys. Rev. E 61, 2050 (2000).

    Article  ADS  Google Scholar 

  74. J. B. Anderson, J. Chem. Phys. 63, 1499 (1975).

    ADS  Google Scholar 

  75. J. B. Anderson, J. Chem. Phys. 65, 4121 (1976).

    ADS  Google Scholar 

  76. M. H. Kalos, J. Comp. Phys. 2, 257 (1967).

    Google Scholar 

  77. S. A. Chin, Phys. Rev. A 42, 6991 (1990).

    Article  ADS  Google Scholar 

  78. Y. H. Lee and M. A. Lee, J. Phys. Soc. Jpn. 58, 91 (1989).

    ADS  Google Scholar 

  79. P. J. Reynolds, D. M. Ceperley, B. J. Alder, and W. A. Lester, Jr., J. Chem. Phys. 77, 5593 (1982).

    Article  ADS  Google Scholar 

  80. S. Baroni and S. Moroni, Phys. Rev. Lett. 82, 4745 (1999).

    Article  ADS  Google Scholar 

  81. J. Casulleras and J. Boronat, Phys. Rev. B 52, 3654 (1995).

    Article  ADS  Google Scholar 

  82. S. Zhang and M. H. Kalos, J. Stat. Phys. 70, 515 (1993).

    MATH  ADS  Google Scholar 

  83. R. N. Barnett, P. J. Reynolds, and W. A. Lester, Jr., J. Comput. Phys. 96, 258 (1988).

    MathSciNet  ADS  Google Scholar 

  84. S. D. Kenny, G. Rajagopal, and R. J. Needs, Phys. Rev. A 51, 1898 (1995).

    Article  ADS  Google Scholar 

  85. P. Langfelder, S. M. Rothstein, and J. Vrbik, J. Chem. Phys. 107, 8525 (1997).

    Article  ADS  Google Scholar 

  86. D. Bressanini, M. Mella, and G. Morosi, Phys. Rev. A 55, 200 (1997).

    Article  ADS  Google Scholar 

  87. N. Jiang and D. M. Schrader, J. Chem. Phys. 109, 9430 (1998).

    Article  ADS  Google Scholar 

  88. D. Bressanini, M. Mella, and G. Morosi, Phys. Rev. A 57, 1678 (1998).

    ADS  Google Scholar 

  89. G. Ortiz, PhD thesis (Losanne, 1992).

    Google Scholar 

  90. M. Mella, S. Chiesa, D. Bressanini, and G. Morosi, (unpublished results).

    Google Scholar 

  91. D. M. Schrader, T. Yoshida, and K. Iguchi, Phys. Rev. Lett. 68, 3281 (1992).

    Article  ADS  Google Scholar 

  92. T. Yoshida and G. Miyako, Phys. Rev. A 54, 4571 (1996).

    ADS  Google Scholar 

  93. A. Harju, B. Barbiellini, and R. M. Nieminen, Phys. Rev. A 54, 4849 (1996).

    Article  ADS  Google Scholar 

  94. A. M. Frolov and V. H. Smith, Jr, Phys. Rev. A 55, 2662 (1997).

    ADS  Google Scholar 

  95. Z. C. Yan and Y. K. Ho, Phys. Rev. A 59, 2697 (1999).

    ADS  Google Scholar 

  96. K. E. Schmidt and J. W. Moskowitz, J. Chem. Phys. 93, 4172 (1990).

    Article  ADS  Google Scholar 

  97. J. W. Moskowitz and K. E. Schmidt, J. Chem. Phys. 97, 3382 (1992).

    Article  ADS  Google Scholar 

  98. D. Bressanini, M. Mella, and G. Morosi, Chem. Phys. Lett. 272, 370 (1997).

    Article  ADS  Google Scholar 

  99. D. Bressanini, M. Mella, and G. Morosi, Chem. Phys. Lett. 240, 566 (1995).

    Article  ADS  Google Scholar 

  100. J. G. Harrison, J. Chem. Phys. 84, 1659 (1986).

    Article  ADS  Google Scholar 

  101. N. Jiang and D. M. Schrader, Phys. Rev. Lett. 81, 5113 (1998).

    ADS  Google Scholar 

  102. D. M. Schrader, T. Yoshida, and K. Iguchi, J. Chem. Phys. 98, 7185 (1993).

    Article  ADS  Google Scholar 

  103. J. Mitroy, M. W. J. Bromley, and G. G. Ryzhikh, J. Phys. B 32, 2203 (1999).

    ADS  Google Scholar 

  104. D. Bressanini, M. Mella, and G. Morosi, (unpublished results).

    Google Scholar 

  105. D. Bressanini, M. Mella, and G. Morosi, J. Chem. Phys. 109, 1716 (1998).

    ADS  Google Scholar 

  106. D. M. Schrader and C. M. Wang, J. Phys. Chem. 80,2507 (1976).

    Article  Google Scholar 

  107. J. Mitroy and G. G. Ryzhikh, J. Phys. B 33, 3495 (2000).

    ADS  Google Scholar 

  108. M. Mella, G. Morosi, D. Bressanini, and S. Elli, J. Chem. Phys. 113, 6154 (2000).

    Article  ADS  Google Scholar 

  109. M. Mella, D. Bressanini, and G. Morosi, http://xxx.sissa.it/abs/physics/0010062

  110. G. Danby and J. Tennyson, Phys. Rev. Lett. 61, 2737 (1988).

    Article  ADS  Google Scholar 

  111. K. Strasburger, Computers Chem. 22, 7 (1998).

    Article  Google Scholar 

  112. S. J. Tao and J. H. Green, J. Phys. Chem. 73, 882 (1969).

    Article  Google Scholar 

  113. L. D. Hullet, Jr., Jun Xu, S. A. McLuckey, T. A. Lewis, and D. M. Schrader, Can. J. Phys. 74, 411 (1996).

    ADS  Google Scholar 

  114. A. Passner, C. M. Surko, M. Leventhal, and A. P. Mills, Jr., Phys. Rev. A 39, 3706 (1989).

    Article  ADS  Google Scholar 

  115. G. L. Glish, R. G. Greaves, S. A. McLuckey, L. D. Hullet, C. M. Surko, Jun Xu, and D. L. Donohue, Phys. Rev. A 49, 2389 (1994).

    Article  ADS  Google Scholar 

  116. T. Yoshida, G. Miyako, N. Jiang, and D. M. Schrader, Phys. Rev. A 54, 964 (1996).

    ADS  Google Scholar 

  117. D. Bressanini, M. Mella, and G. Morosi, J. Chem. Phys. 109, 5931 (1998).

    ADS  Google Scholar 

  118. C. M. Kao and P. E. Cade, J. Chem. Phys. 80, 3234 1984).

    Article  ADS  Google Scholar 

  119. L. A. Curtiss, K. Raghavachari, G. W. Trukcs, and J. A. Pople, J. Chem. Phys. 94, 7221 (1991).

    Article  ADS  Google Scholar 

  120. T. Saito, M. Tachikawa, C. Ohe, K. Iguchi, and K. Suzuki, J. Phys. Chem. 100, 6057 (1996).

    Article  Google Scholar 

  121. D. Bressanini, P. Cremaschi, M. Mella, and G. Morosi, in Recent advances in quantum Monte Carlo methods, edited by W. A. Lester, Jr., World Scientific Publishing, Singapore (1997).

    Google Scholar 

  122. R. Assaraf and M. Caffarel, Phys. Rev. Lett 83, 4682 (1999).

    Article  ADS  Google Scholar 

  123. C. Kurz, R. G. Greaves, and C. M. Surko, Phys. Rev. Lett 77, 2929 (1996).

    Article  ADS  Google Scholar 

  124. P. Van Reeth and J. W. Humberston, J. Phys. B 28, L511 (1995).

    Google Scholar 

  125. A. K. Bathia, A. Temkin, R. J. Drachman, and H. Eiserike, Phys. Rev. A 3, 1328 (1971).

    ADS  Google Scholar 

  126. P. K. Biswas, Phys. Rev. A 61, 012502 (2000).

    Article  ADS  Google Scholar 

  127. P. A. Fraser, Adv. At. Mol. Phys. 4, 63 (1968).

    Google Scholar 

  128. D. A. Paul and L. Saint-Pierre, Phys. Rev. Lett. 11, 493 (1963).

    Article  ADS  Google Scholar 

  129. K. Iwata, G. F. Gribakin, R. G. Greaves, C. Kurz, and C. M. Surko, Phys. Rev. A 61, 022719 (2000).

    Article  ADS  Google Scholar 

  130. G. F. Gribakin, Phys. Rev. A 61, 022720 (2000).

    Article  ADS  Google Scholar 

  131. F. A, Gianturco and T. Mukherjee, Nucl. Instrum. Methods B 171, 17 (2000).

    Article  ADS  Google Scholar 

  132. Y. Alhassid and S. E. Koonin, Ann. Phys. 155, 108 (1984).

    ADS  Google Scholar 

  133. J. Carlson V. R. Pandharipande, and R. B. Wiringa, Nucl. Phys. A 424, 47 (1984).

    ADS  Google Scholar 

  134. J. Shumway and D. M. Ceperley, http://xxx.sissa.it/abs/cond-mat/9907309

  135. T. Mukherjee, B. N. Ganguly, and B. Dutta-Roy, J. Chem. Phys. 107, 7467 (1997).

    Article  ADS  Google Scholar 

  136. R. O. Jones and O. Gunnarsson, Rev. Mod. Phys. 61, 689 (1989).

    Article  ADS  Google Scholar 

  137. C. Filippi, C. J. Umrigar, and M. Taut, J. Chem. Phys. 100, 1290 (1994).

    Article  ADS  Google Scholar 

  138. M. Nekovee, W. M. C. Foulkes, A. J. Williamson, G. Rajagopal, and R. J. Needs, Adv. Quantum Chem. 33, 189 (1999).

    ADS  Google Scholar 

  139. C. J. Umrigar and X. Gonze, Phys. Rev. A 50, 3827 (1994).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Kluwer Academic Publishers

About this chapter

Cite this chapter

Mella, M., Chiesa, S., Bressanini, D., Morosi, G. (2001). Positron Chemistry by Quantum Monte Carlo. In: Surko, C.M., Gianturco, F.A. (eds) New Directions in Antimatter Chemistry and Physics. Springer, Dordrecht. https://doi.org/10.1007/0-306-47613-4_14

Download citation

  • DOI: https://doi.org/10.1007/0-306-47613-4_14

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-0-7923-7152-6

  • Online ISBN: 978-0-306-47613-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics