Advertisement

Positronic Atoms

  • J. Mitroy
  • M. W. J. Bromley
  • G. G. Ryzhikh

Abstract

In recent years, the ability of positrons to bind to neutral atoms with binding energies as large as 0.4 eV has been demonstrated. These exotic systems have a tendency to form sub-systems as the relative interaction strength between the different components changes. The investigation of these systems is providing unique insights into the way positrons interact with atoms and other complex electronic systems.

Keywords

Valence Electron Polarization Potential Annihilation Rate Diffusion Monte Carlo Positronic Atom 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    P. A. M. Dirac, Proc. Camb. Philos. Soc. 26 361 (1930).zbMATHCrossRefGoogle Scholar
  2. [2]
    C. D. Anderson, Phys. Rev. 43 491 (1933).ADSCrossRefGoogle Scholar
  3. [3]
    P. J. Schultz and K. G. Lynn, Rev. Mod. Phys. 60 701 (1988).CrossRefADSGoogle Scholar
  4. [4]
    M. J. Puska and R. M. Nieminen, Rev. Mod. Phys. 66 841 (1994).CrossRefADSGoogle Scholar
  5. [5]
    G. G. Ryzhikh and J. Mitroy, Phys. Rev. Letts. 79 4124 (1997).CrossRefADSGoogle Scholar
  6. [6]
    K. Strasburger and H. Chojnacki, J. Chem. Phys. 108 3218 (1998).CrossRefADSGoogle Scholar
  7. [7]
    D. M. Schrader and R. C. Wedlich, in From Atoms to Polymers: Isoelectronic analogies, edited by J. F. Liebman and A. Greenburg (Wiley-VCH, NY, 1989).Google Scholar
  8. [8]
    D. M. Schrader, Nucl. Iustrum. Methods B 143 209 (1998).ADSCrossRefGoogle Scholar
  9. [9]
    P. Cavaliere and G. Ferrante, Nuovo Cimento 14B 127; ibid 147 (1973).Google Scholar
  10. [10]
    D. C. Clary, J. Phys. B 9 3115 (1976).CrossRefADSGoogle Scholar
  11. [11]
    R. J. Drachman, Y. K. Ho and S. K. Houston, J. Phys. B 9 L199 (1976).CrossRefADSGoogle Scholar
  12. [12]
    F. H. Gertler, H. B. Snodgrass and L. Spruch, Phys. Rev. 172 110 (1968).CrossRefADSGoogle Scholar
  13. [13]
    S. Golden and I. R. Epstein, Phys. Rev. A 10 761 (1974).ADSCrossRefGoogle Scholar
  14. [14]
    E. A. G. Armour, J. Phys. B 11 2803 (1978).CrossRefADSGoogle Scholar
  15. [15]
    H. A. Kurtz and K. D. Jordan, Int. J. Quant. Chem 14 747 (1978).CrossRefGoogle Scholar
  16. [16]
    R. Szmytowski, J. de. Phys. II 3 183 (1993).ADSCrossRefGoogle Scholar
  17. [17]
    V. A. Dzuba, V. V. Flambaum, G. F. Gribakin and W. A. King, Phys. Rev. A 52 4541 (1995).CrossRefADSGoogle Scholar
  18. [18]
    R. P. McEachran and A. D. Stauffer, Nucl. Iast. Methods B 143 199 (1998).ADSCrossRefGoogle Scholar
  19. [19]
    A. Ore and J. L. Powell, Phys. Rev. 75 1696 (1949).ADSzbMATHCrossRefGoogle Scholar
  20. [20]
    R. M. Ferrell, Rev. Mod. Phys. 28 308 (1956).CrossRefADSGoogle Scholar
  21. [21]
    Change Lee, Sov. Phys. JETP 6 281 (1958).ADSGoogle Scholar
  22. [22]
    S. M. Neamtan, G. Darewych and G. Oczkowski, Phys. Rev. 126 193 (1962).CrossRefADSGoogle Scholar
  23. [23]
    R. J. Drachman, 1995 in The Physics of Electronic and Atomic Collisions, edited by L. J. Dube, J. B. A. Mitchell, J. W. McConkey, and C. E. Brion (AIP, New York), Vol. XIX, p. 369.Google Scholar
  24. [24]
    G. G. Ryzhikh and J. Mitroy, J. Phys. B 32 4051 (1999).CrossRefADSGoogle Scholar
  25. [25]
    S. F. Boys, Proc. R. Soc. London Ser.A 258 402 (1960).MathSciNetzbMATHADSCrossRefGoogle Scholar
  26. [26]
    K. Singer, Proc. R. Soc. London Ser.A 258 412 (1960).zbMATHADSCrossRefGoogle Scholar
  27. [27]
    Y. Suzuki and K. Varga, Stochastic Variational Approach to Quantum-Mechanical Few-Body Problems. (Springer, NY 1998).Google Scholar
  28. [28]
    V. I. Kukulin and V. M. Krasnopolsky, J. Phys. G 3 795 (1977).CrossRefADSGoogle Scholar
  29. [29]
    K. Varga and Y. Suzuki, Phys. Rev. C 52 2885 (1995).ADSCrossRefGoogle Scholar
  30. [30]
    K. Varga and Y. Suzuki, Comp. Phys. Commun. 106 157 (1997).ADSzbMATHCrossRefGoogle Scholar
  31. [31]
    Y. Suzuki, J. Usukura and K. Varga, J. Phys. B: 31 31 (1998).ADSCrossRefGoogle Scholar
  32. [32]
    G. G. Ryzhikh, J. Mitroy and K. Varga, J. Phys. B 31 3965 (1998).ADSCrossRefGoogle Scholar
  33. [33]
    B. L. Hammonds, W. A. Lester Jr and P. J. Reynolds, Monte Carlo Methods in ab-initio Quantum Chemistry (World Scientific, Singapore 1994).CrossRefGoogle Scholar
  34. [34]
    N. Jiang, and D. M. Schrader, J. Chem. Phys. 109 9430 (1998).CrossRefADSGoogle Scholar
  35. [35]
    M. Mella, G. Morosi and D. Bressanini, J. Chem. Phys. 111 108 (1999).CrossRefADSGoogle Scholar
  36. [36]
    A. Hibbert, Rep. Prog. Phys. 38 1217 (1975).CrossRefADSGoogle Scholar
  37. [37]
    J. Mitroy and G. G. Ryzhikh, J. Phys. B 32 2831 (1999).ADSCrossRefGoogle Scholar
  38. [38]
    V. A. Dzuba, V. V. Flambaum, G. F. Gribakin and C. Harabati, Phys. Rev. A 60 3641 (1999).CrossRefADSGoogle Scholar
  39. [39]
    M. W. J. Bromley, J. Mitroy and G. G. Ryzhikh, Nucl. Instrum. Methods B 171 47 (2000).CrossRefADSGoogle Scholar
  40. [40]
    V. M. Krasnopolsky and V. I. Kukulin, Sov. J. Nucl. Phys. 20 883 (1974).Google Scholar
  41. [41]
    J. Mitroy and G. G. Ryzhikh, Comp. Phys. Commun. 123 103 (1999).ADSzbMATHCrossRefGoogle Scholar
  42. [42]
    A. Hibbert, 1989 Phys. Scr. 39 574 (1989).ADSCrossRefGoogle Scholar
  43. [43]
    J. Mitroy, J. Phys. B 26 3703 (1993).ADSCrossRefGoogle Scholar
  44. [44]
    J. Mitroy and D. W. Norcross, Phys. Rev. A 37 3755 (1988).ADSCrossRefGoogle Scholar
  45. [45]
    G. G. Ryzhikh and J. Mitroy, J. Phys. B 31 5013 (1998).ADSCrossRefGoogle Scholar
  46. [46]
    J. Mitroy, M. W. J. Bromley and G. G. Ryzhikh, J. Phys. B 32 2203 (1999).ADSCrossRefGoogle Scholar
  47. [47]
    J. Mitroy, J. Phys. B 33 5307 (2000).ADSCrossRefGoogle Scholar
  48. [48]
    J. A. Wheeler, Ann. N. Y. Acad. Sci. 68 278 (1946).Google Scholar
  49. [49]
    E. A. Hylleraas and A. Ore, Phys. Rev. 71 493 (1947).ADSzbMATHCrossRefGoogle Scholar
  50. [50]
    A. Ore, Phys. Rev. 83 665 (1951).CrossRefADSGoogle Scholar
  51. [51]
    Y. K. Ho, Phys. Rev. A 48 4780 (1993).ADSCrossRefGoogle Scholar
  52. [53]
    J. Mitroy and G. G. Ryzhikh, J. Phys. B 32 L621 (1999).ADSCrossRefGoogle Scholar
  53. [54]
    G. G. Ryzhikh and J. Mitroy, J. Phys. B 31 4459 (1998).ADSCrossRefGoogle Scholar
  54. [55]
    V. A. Dzuba, V. V. Flambaum and C. Harabati Phys.Rev. A 62 042504 (2000).ADSCrossRefGoogle Scholar
  55. [56]
    M. W. J. Bromley and J. Mitroy, J. Phys. B 33 L325 (2000).CrossRefADSGoogle Scholar
  56. [57]
    S. Bashkin and J. O. Stoner, Atomic Energy Levels and Grotrian Diagrams, Vol I and II (NH; Amsterdam 1975).Google Scholar
  57. [58]
    J. Mitroy and G. G. Ryzhikh, J. Phys. B 32 1375 (1999).ADSCrossRefGoogle Scholar
  58. [59]
    Handbook of Chemistry and Physics, eds D. R. Lide and H. P. R. Frederikse (Boca Raton Fl, CRC Press 1993).Google Scholar
  59. [60]
    V. V. Petrunin, H. H. Andersen, P. Balling and T. Andersen, Phys. Rev. Lett. 76 744 (1996).CrossRefADSGoogle Scholar
  60. [61]
    R. K. Nesbet, Phys. Rev. A 20 58 (1979).CrossRefADSGoogle Scholar
  61. [62]
    T. F. O’Malley and R. W. Crompton, J.Phys.B 13 3451 (1980).ADSCrossRefGoogle Scholar
  62. [63]
    Z. Lj Petrovic, T. F. O’Malley and R. W. Crompton, J.Phys. B 28 3309 (1995).CrossRefADSGoogle Scholar
  63. [64]
    M. J. Brennan and K. F. Ness, Aust. J. Phys. 46 249 (1993).ADSGoogle Scholar
  64. [65]
    B. Schmidt, K. Berkhan, B. Gotz and M. Muller, Phys. Scr. T53 30 (1994).ADSCrossRefGoogle Scholar
  65. [66]
    J. W. Humberston, Adv. At. Mol. Phys. 15 101 (1979).CrossRefGoogle Scholar
  66. [67]
    R. P. McEachran, A. G. Ryman and A. D. Stauffer, J. Phys. B 11 551 (1978).ADSCrossRefGoogle Scholar
  67. [68]
    A. W. Yau, R. P. McEachran and A. D. Stauffer, J. Phys. B 11 2907 (1978).CrossRefADSGoogle Scholar
  68. [69]
    R. P. McEachran, A. D. Stauffer and L. E. M. Campbell, J.Phys. B 13 1281 (1980).CrossRefADSGoogle Scholar
  69. [70]
    D. B. Kinghorn and L. Adamowicz, Phys. Rev. Lett. 83 2541 (1999).CrossRefADSGoogle Scholar
  70. [71]
    J. Zs Mezei, J. Mitroy, R. G. Lovas and K. Varga, Phys. Rev. A (under review).Google Scholar
  71. [72]
    A. Stathopolous and C. F. Fischer, Comp. Phys. Commun. 79 269 (1994).ADSGoogle Scholar
  72. [73]
    Z. C. Yan and Y. K. Ho, Phys. Rev. A 59 2697 (1999).ADSCrossRefGoogle Scholar
  73. [74]
    J. Mitroy, Aust. J. Phys. 48 893 (1995).ADSGoogle Scholar
  74. [75]
    J. Yuan, B. D. Esry, T. Morishita and C. D. Lin, Phys. Rev. A 58 R4 (1998).CrossRefADSGoogle Scholar
  75. [76]
    J. Mitroy and G. G. Ryzhikh, J. Phys. B 32 3839 (1999).ADSCrossRefGoogle Scholar
  76. [77]
    D. Bressanini, M. Mella and G. Morosi, J. Chem. Phys. 108 4756 (1998).CrossRefADSGoogle Scholar
  77. [78]
    N. Jiang and D. M. Schrader, Phys. Rev. Letts. 81 5113 (1998).ADSCrossRefGoogle Scholar
  78. [79]
    D. M. Schrader, T. Yoshida and K. Iguchi, Phys. Rev. Lett. 68 3281 (1992).CrossRefADSGoogle Scholar
  79. [80]
    D. M. Schrader, T. Yoshida and K. Iguchi, J. Chem. Phys. 98 7183 (1993).CrossRefADSGoogle Scholar
  80. [81]
    J. Usukura, K. Varga and Y. Suzuki, Phys. Rev. A 58 1918 (1998).CrossRefADSGoogle Scholar
  81. [82]
    K. Varga, Phys. Rev. Lett. 83 5471 (1999).CrossRefADSGoogle Scholar
  82. [83]
    S. K. Adhikari, P. K. Biswas and R. A. Sultanov Phys. Rev. A. 59 4829 (1999).ADSCrossRefGoogle Scholar
  83. [84]
    M. Skalsey, J. J. Engbrecht, R. K. Bithell, R. S. Vallery and D. W. Gidley, Phys. Rev. Lett. 80 3727 (1998).CrossRefADSGoogle Scholar

Copyright information

© Kluwer Academic Publishers 2001

Authors and Affiliations

  • J. Mitroy
    • 1
  • M. W. J. Bromley
    • 1
  • G. G. Ryzhikh
    • 1
  1. 1.Faculty of ScienceNorthern Territory UniversityDarwinAustralia

Personalised recommendations