Skip to main content

Abstract

We present results on trapping and cooling of positrons in a Penning trap. Positrons from a 2 mCi 22 Na source travel along the axis of a 6 T magnet and through the trap after which they strike a Cu reflection moderator crystal. Up to a few thousand positrons are trapped and lose energy through Coulomb collisions (sympathetic cooling) with laser-cooled 9 Be +. By imaging the 9 Be + laser-induced fluorescence, we observe centrifugal separation of the 9 Be+ ions and positrons, with the positrons coalescing into a column along the trap axis. This indicates the positróns have the same rotation frequency and comparable density (4 × 10 9 cm−3) as the 9 Be + ions, and places an upper limit of approximately 5 K on the positron temperature of motion parallel to the magnetic field. We estimate the number of trapped positrons from the volume of this column and from the annihilation radiation when the positrons are ejected from the trap. The measured positron lifetime is > 8 days in our room temperature vacuum of 10 −8 Pa.

Contribution of the National Institute of Standards and Technology. Not subject to U.S. copyright.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. D. J. Wineland, C. S. Weimer, and J. J. Bellinger, Hyperfine Interac. 76, 115 (1993).

    Article  ADS  Google Scholar 

  2. A. S. Newbury, B. M. Jelenković J. J. Bellinger, and D. J. Wineland, Phys. Rev. A 62, 023405 (2000).

    Article  ADS  Google Scholar 

  3. R. G. Greaves and C. M. Surko, Phys. Plasmas 4, 1528 (1997).

    Article  ADS  Google Scholar 

  4. A. P. Mills, Hyperfine Interact. 44, 107 (1988).

    Google Scholar 

  5. S. J. Gilbert, C. Kurtz, R. G. Greaves, and C. M. Surko, Appl. Phys. Lett. 70, 1944 (1997).

    Article  ADS  Google Scholar 

  6. R. G. Greaves and C. M. Surko, in Non-neutral Plasma Physics III, edited by J. Bellinger, R. Spencer, and R. Davidson (AIP, New York, 1999), p. 19.

    Google Scholar 

  7. J. J. Bollinger et al., in Intense Positron Beams, edited by E. Ottewitte and W. Kells (World Scientific, Singapure, 1988), p. 63.

    Google Scholar 

  8. J. H. Malmberg and T. M. O’Neil, Phys. Rev. Lett. 39, 1333 (1977).

    Article  ADS  Google Scholar 

  9. G. Gabrielse, S. L. Rolston, L. Haarsma, and W. Kells, Phys. Lett. A129, 38 (1988).

    ADS  Google Scholar 

  10. M. E. Glinsky and T. M. O’Neil, Phys. Fluids B3, 1279 (1991).

    ADS  Google Scholar 

  11. G. Gabrielse et al., Hyperfine Interact. 76, 81 (1993).

    Article  ADS  Google Scholar 

  12. P. B. Schwinberg, R. S. V. Dyck, and H. G. Dehmelt, Phys.Lett. 81, 119 (1981).

    Article  Google Scholar 

  13. R. S. Conti, B. Ghaffari, and T. D. Steiger, Nucl. Instr. Meth.Phys. Res. A299, 420 (1990).

    ADS  Google Scholar 

  14. H. Boehmer, M. Adams, and N. Rynn, Phys.Plasmas 2, 4369 (1995).

    Article  ADS  Google Scholar 

  15. L. Haarsma, K. Abdullah, and G. Gabrielse, Phys. Rev. Lett. 75, 806 (1995).

    Article  ADS  Google Scholar 

  16. G. Gabrielse et al., in Non-neutral Plasma Physics III, edited by J. Bollinger, R. Spencer, and R. Davidson (AIP, New York, 1999), p. 29.

    Google Scholar 

  17. J. Estrada et al., Phys. Rev. Lett. 84, 859 (2000).

    Article  ADS  Google Scholar 

  18. T. J. Murphy and C. M. Surko, Phys. Rev. A 46, 5696 (1992).

    Article  ADS  Google Scholar 

  19. C. M. Surko, S. J. Gilbert, and R. G. Greaves, in Non-neutral Plasma Physics III, edited by J. Bollinger, R. Spencer, and R. Davidson (AIP, New York, 1999), p. 3.

    Google Scholar 

  20. R. G. Greaves and C. M. Surko, Phys. Rev. Lett. 85, 1883 (2000).

    Article  ADS  Google Scholar 

  21. X. P. Huang, J. J. Bollinger, T. B. Mitchel, and W. M. Itano, Phys. Rev. Lett. 80, 73 (1998).

    Article  ADS  Google Scholar 

  22. X. P. Huang et al., Phys. Plasmas 5, 1656 (1998).

    Article  ADS  Google Scholar 

  23. J. J. Bollinger and D. J. Wineland, Phys. Rev. Lett. 53, 348 (1984).

    Article  ADS  Google Scholar 

  24. L. R. Brewer et al., Phy. Rev. A 38, 859 (1988).

    Article  ADS  Google Scholar 

  25. W. M. Itano, L. R. Brewer, D. J. Larson, and D. J. Wineland, Phys. Rev. A 38, 5698 (1988).

    Article  ADS  Google Scholar 

  26. D. J. Heinzen et al., Phys. Rev. Lett. 66, 2080 (1991).

    Article  ADS  Google Scholar 

  27. C. A. Murray and A. P. Mills, Jr., Solid State Commun. 34, 789 (1980).

    Article  ADS  Google Scholar 

  28. R. J. Wilson, Phys. Rev. B 27, 6974 (1983).

    Article  ADS  Google Scholar 

  29. M. E. Glinsky, T. M. O’Niel, and M. N. Rosenbluth, Phys. Fluids B 4, 1156 (1992).

    Article  ADS  Google Scholar 

  30. J. D. Larson, J. C. Bergquist, W. M. Itano, and D. J. Wineland, Phys. Rev. Lett. 57, 70 (1986).

    Article  ADS  Google Scholar 

  31. T. M. O’Neil, Phys. Fluids 24, 1447 (1981).

    Article  ADS  MATH  Google Scholar 

  32. J. J. Bollinger et al., IEEE Trans. Instr. Measurement 40, 126 (1991).

    Article  Google Scholar 

  33. H. Imajo et al., Phys. Rev. A 55, 1276 (1997).

    Article  ADS  Google Scholar 

  34. L. Gruber et al., Phys. Rev. Lett. 86, 636 (2001).

    Article  ADS  Google Scholar 

  35. D. H. Dubin and T. O’Niel, Rev. Mod. Phys. 71, 87 (1999).

    Article  ADS  Google Scholar 

  36. D. H. E. Dubin and T. M. O’Neil, Phys. Rev. Lett. 60, 511 (1988).

    Article  ADS  Google Scholar 

  37. E. M. Hollmann, F. Anderegg, and C. Driscoll, Phys. Rev. Lett. 82, 4839 (1999).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Kluwer Academic Publishers

About this chapter

Cite this chapter

Jelenković, B.M., Bollinger, J.J., Newbury, A.B., Mitchell, T.B., Itano, W.M. (2001). A Laser-cooled Positron Plasma. In: Surko, C.M., Gianturco, F.A. (eds) New Directions in Antimatter Chemistry and Physics. Springer, Dordrecht. https://doi.org/10.1007/0-306-47613-4_1

Download citation

  • DOI: https://doi.org/10.1007/0-306-47613-4_1

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-0-7923-7152-6

  • Online ISBN: 978-0-306-47613-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics