Some Quantum-Oriented Electrochemistry


Electron Transfer Fermi Level Potential Energy Curve Reorganization Energy Symmetry Factor 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Further Reading

  1. 1.
    H. Gerischer, Z. Physikal. Chem. 26: 223 (1960). Absolute potential; Fermi level in solution.Google Scholar
  2. 2.
    P. Lohman, Z. Naturforsch. A22: 843 (1967). Calculation of the value of the absolute potential of the hydrogen electrode.Google Scholar
  3. 3.
    M. Ali Omar, Elementary Solid State Physics, Addison-Wesley, Reading, MA (1975). Fermi’s law, etc.Google Scholar
  4. 4.
    J. O’M. Bockris and S. U. M. Khan, Appl. Phys. Lett. 42: 124 (1983). Fermi levels in solution.Google Scholar
  5. 5.
    S. U. M. Khan and J. O’M. Bockris, J. Phys. Chem. 87: 2599 (1983). Electron transfer theory.Google Scholar
  6. 6.
    H. Reiss, J. Phys. Chem. 89: 3783 (1985). Absolute potentials.Google Scholar
  7. 7.
    S. Trasatti, in Trends in Interfacial Electrochemistry, A. Fernando Silva, ed., Vol. 179, NATO ASI Series 179, Reidel, Dordrecht (1986). The potential of oriented water at a metal/solution interface.Google Scholar
  8. 8.
    J. O’M. Bockris and S. Argade, J. Chem. Phys. 49: 5133 (1986). Calculation of the value for the absolute potential of the hydrogen electrode and of a Galvani potential.Google Scholar
  9. 9.
    S. U. M. Khan, R. Kainthla, and J. O’M. Bockris, J. Phys. Chem. 91: 594 (1987). Absolute potentials.CrossRefGoogle Scholar
  10. 10.
    J. Goodisman, Electrochemistry: Theoretical Foundations, Wiley, New York (1987).Google Scholar
  11. 11.
    A. M. Kuznetsov, Charge Transfer in Physics, Chemistry and Biology, Gordon and Breach, Luxemborg (1995). Broad treatment of many aspects of charge transfer; only two out of twenty chapters are directly electrochemical.Google Scholar
  12. 12.
    R. J. Dewayne Miller, G. McLendon, A. J. Nozik, W. Schmickler, and Frank Willig, Surface Electron Transfer, VCH Publishers, New York (1995). Advanced discussions.Google Scholar
  13. 13.
    W. Schmickler, Interfacial Electrochemistry, Oxford University Press, Oxford (1996). A brief summary.Google Scholar

Further Readings Seminal

  1. 1a.
    R. W. Gurney, Proc. Roy. Soc. London, A134: 127 (1931). The founding paper of quantum electrochemistry. Treatment of quantum mechanical transfer applied to protons at an electrode. However, the bond to the metal was not made.Google Scholar
  2. 2a.
    J. Horiuti and J. C. Polanyi, Acta Physicochim. URSS 2: 505 (1935). Potential energy curves given for the discharge of protons onto metals. Effect of change of metal bond shown; foundation of electrocatalysis.Google Scholar
  3. 3a.
    J. A. V. Butler, Proc. Roy. Soc. London A157: 423 (1936). Quantum mechanical Gurneyian approach corrected for bonding to metal.Google Scholar
  4. 4a.
    R. Parsons and J. O’M. Bockris, Trans. Faraday Soc. 47: 914 (1951). Gurney-Butler approach applied quantitatively to proton discharge (numerical).Google Scholar
  5. 5a.
    J. Weiss, Proc. Roy. Soc. London A222: 128 (1954). First electron transfer theory in terms of electrostatic changes, including energy of reorganization, ε opt and ε stat’ adiabatic and nonadiabatic theory, and much else.Google Scholar
  6. 6a.
    R. Kubo and Y. Toyozawa, Prog. Theoret. Phys. 130: 411 (1955). Early formation of reorganization energy in electron transfer.Google Scholar
  7. 7a.
    R. A. Marcus, J. Chem. Phys. 24: 966 (1956). Follows Weiss-like model, but explicitly applied to rate calculation. Harmonic oscillators.Google Scholar
  8. 8a.
    B. E. Conway and J. O’M. Bockris, Canad. J. Chem. 35: 1124 (1957). Gurney-Butler approach to electrochemical desorption of adsorbed H. 3D models of potential surface for the reaction (numerical).Google Scholar
  9. 9a.
    P. George and J. Griffith, in Enzymes, P. D. Boyer, H. Lardy and K. Myrback, eds., Vol. 1, p. 347, Academic Press, New York (1959). The first quantitative formulation of vibrational activation for redox reactions from first-layer ligands.Google Scholar
  10. 10a.
    V. Levich and R. R. Dogonadze, Dokl. Akad. Nauk. SSSR 124: 123 (1959). Hamiltonian formulation for electron transfer; dielectric polarization approach. Quantum aspects of Weiss-Marcus model developed.Google Scholar


  1. 1b.
    R. A. Marcus, J. Chem. Phys. 93: 679 (1965). The addition of the George and Griffith theory (vibrational activation) to electrostatics of electron transfer.Google Scholar
  2. 2b.
    J. O’M. Bockris and D. B. Matthews, J. Chem. Phys. 44: 298 (1966). Quantal properties of the proton experimentally established.Google Scholar
  3. 3b.
    V. G. Levich, in Physical Chemistry: An Advanced Treatise, H. Eyring, D. Henderson, and W. Jost, eds., Vol. 9B, Ch. 12, Academic Press, New York (1970). A review stressing polaron theory in a rationalization in quantal terms of outer-sphere activation.Google Scholar
  4. 4b.
    J. O’M. Bockris, D. B. Matthews, and S. U. M. Khan, J. Res. Inst. Catal. 22: 1 (1974). The ΔG OX calculated from the electrostatic model of Weiss-Marcus is discrepant with experimental trends, but a vibrational energy based theory fits well.Google Scholar
  5. 5b.
    S. U. M. Khan, P. Wright, and J. O’M. Bockris, Elektrokhimya 13: 914 (1977). The first application of time-dependent perturbation theory to quantum electrode kinetics;redox reactions.Google Scholar
  6. 6b.
    J. O’M. Bockris and S. U. M. Khan, Quantum Electrochemistry, Plenum, New York (1979). A monograph.Google Scholar
  7. 7b.
    W. Schmickler, J. Electroanal. Theory 100: 533 (1979). Theory of electrodic currents through coatings (and oxide films) in terms of resonance tunneling. Tafel lines curve.Google Scholar
  8. 8b.
    W. Schmickler, J. Electroanal. Chem. 204: 31 (1986). A discussion of the influence of the choice of Hamiltonian on electron-transfer theory.CrossRefGoogle Scholar
  9. 9b.
    L. A. Curtis, J. W. Halley, J. Hautmann, and A. Bakman, J. Chem. Phys. 86: 2319 (1987). Molecular dynamics gives “activation energies” in agreement with experiment 3 times larger than those of Weiss-Marcus.Google Scholar
  10. 10b.
    J. W. Halley and J. Hautmann, Phys. Rev. B 38: 11704 (1988). First molecular dynamic simulation of interfacial electron transfer.CrossRefGoogle Scholar
  11. 11b.
    J. O’M. Bockris and J. Wass, J. Electroanal. Chem. 267: 325 (1989). Electrode kinetics at the superconductor/solution interface.Google Scholar
  12. 12b.
    A. M. Kuznetsov, in Modern Aspects of Electrochemistry, J. O’M. Bockris, B. E. Conway and R. White, eds., Vol. 20, Ch. 2, Plenum, New York (1990). A review stressing the dielectric continuum viewpoint.Google Scholar
  13. 13b.
    W. Schmickler, J. Electroanal. Chem. 284: 269 (1990). A theory of the variation of the transfer coefficient with temperature.CrossRefGoogle Scholar
  14. 14.
    A. B. Anderson, J. Electroanal. Chem. 280: 37 (1990). Molecular orbital theory and the influence of electrode potential.CrossRefGoogle Scholar
  15. 15.
    C. E. D. Chidsey, Science 251: 919 (1991). Theory of electron transfer at gold covered by a thick layer of organic material.Google Scholar
  16. 16.
    J. M. Savéant, J. Am. Chem. Soc. 109: 6288 (1992). Anharmonic analysis of RX+e 0 R + x Activation energy is made up of 80% bond breaking.Google Scholar
  17. 17.
    V. Perez, J. M. Leach, and J. Bertran, J. Computational Chem. 13: 1057 (1992). A Monte Carlo approach to bond-breaking reactions at electrodes.CrossRefGoogle Scholar
  18. 18.
    M. J. Weaver, Chem. Rev. 92: 463 (1992). A review, oriented to mechanism determination for redox reaction.CrossRefGoogle Scholar
  19. 19.
    A. B. Anderson, Int. J. Quantum Chem. 49: 581 (1994). How electron density affects the electron-transfer rate.CrossRefGoogle Scholar
  20. 20.
    P. J. Russky and J. D. Simon, Nature 370: 263 (1994). The solvent medium affects the rate of electron transfer.Google Scholar
  21. 21.
    D. A. Rose and E. Benjamin, J. Chem. Phys. 100: 3545 (1994). Molecular Dynamic Simulation of the free energy function in Fe 3+ + eFe 2+ CrossRefGoogle Scholar
  22. 22.
    W. Schmickler, Chem. Phys. Lett. 237: 152 (1995). Electron-transfer and ion-transfer reactions at electrodes distinguished.CrossRefGoogle Scholar
  23. 23.
    J. B. Strauss, A. Calhoun, and G. Voth, J. Chem. Phys. 65: 529 (1995). Molecular dynamic (MD) simulation of charge transfer at the interface.Google Scholar
  24. 24.
    Z. Nagy, J. P. Bleaudeau, N. C. Hung, L. A. Curtiss, and D. J. Zurewski, J. Electrochem. Soc. 142: 1887 (1995).Google Scholar
  25. 25.
    W. Schmickler, Interfacial Electrochemistry, Oxford University Press, Oxford (1996). A 284-page encapsulation of selected elements of the theory assuming harmonic oscillators.Google Scholar
  26. 26.
    A. Calhoun and G. Voth, J. Phys. Chem. 140: 10746 (1996). Molecular dynamic simulation in redox reactions.Google Scholar
  27. 27.
    E. Benjamin, in Modern Aspects of Electrochemistry, R. H. White, B. E. Conway, and J. O’M. Bockris, eds., Vol. 31, Ch. 3, Plenum, New York (1997). Molecular dynamic simulation in interfacial electrochemistry.Google Scholar
  28. 28.
    S. U. M. Khan, in Modern Aspects of Electrochemistry, R. H. White, B. E. Conway, and J. O’M. Bockris, eds., Vol. 31, Ch. 2, Plenum, New York (1997). Quantum mechanical contributions to electrode kinetics.Google Scholar
  29. 29.
    J. O’M. Bockris and R. Sidik, J. Electroanal. Chem. 448(2): 189 (1998). A semiquantitative quantum theory of the oxygen reduction reaction.Google Scholar

Copyright information

© Kluwer Academic Publishers 2002

Personalised recommendations