Skip to main content

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 379.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Bargar, W.L., Brown, S.A., Paul, H.A., Voegli, T., Hseih, Y., Sharkey, N. 1986. In vivo versus in vitro polymerization of acrylic bone cement: effect on material properties, J. Orthop. Res. 4, 86.

    Article  Google Scholar 

  • Bayne, S.C., Lautenschlager, E.P., Compere, C.L., Wildes, R. 1975. Degree of polymerization of acrylic bone cement, J. Biomed. Mater. Res. 9, 27.

    Article  Google Scholar 

  • Bayne, S.C., Lautenschlager, E.P., Greener, E.H., Meyer, P.R. 1977. Clinical influences on bone cement monomer release, J. Biomed. Mater. Res. 11, 859.

    Article  Google Scholar 

  • Beaumont, P.W.R. 1977. The strength of acrylic bone cements and acrylic cement-stainless steel interfaces. Part I, The strength of acrylic bone cement containing second phase dispersions, J. Mater. Sci. 12, 1845.

    Google Scholar 

  • Beaumont, P.W.R., Young, R.J. 1975. Slow crack growth in acrylic bone cement, J. Biomed. Mater. Res. 9, 423.

    Article  Google Scholar 

  • Berry, J. 1964. Fracture processes in polymeric materials. V. Dependence of the ultimate properties of polymethylmethacrylate on molecular weight, J. Polym. Sci. A, 2, 4069.

    Google Scholar 

  • Birch, R., Wilkinson, M.C.P., Vijayan, K.P., Gschmeissner, S. 1992. Cement burn of the sciatic nerve, J. Bone Jt. Surg. 74B, 731–733.

    Google Scholar 

  • Brauer, G.M., Termini, D. J., Dickson, G. 1977. Analysis of the ingredients and determination of the residual components of acrylic bone cements, J. Biomed. Mater. Res. 11, 577.

    Article  Google Scholar 

  • Brauer, G.M., Steinberger, D.R., Stansbury, J.W. 1986. Dependence of curing time, peak temperature, and mechanical properties on the composition of bone cement, J. Biomed. Mater. Res. 20, 839.

    Article  Google Scholar 

  • Buckley, C.A., Lautenschlager, E.P., Gilbert, J.L. 1991. High strength PMMA fibers for use in a self-reinforced acrylic cement, fiber tensile properties and composite toughness, Proceedings of the 17th Annual Meeting of the Society for Biomaterials, p. 45.

    Google Scholar 

  • Caravia, L., Dowson, D., Fisher, J., Jobbins, B. 1990. The influence of bone and bone cement debris on counterface roughness in sliding wear tests of ultra-high molecular weight polyethylene on stainless steel, Proc. Inst. Mech. Eng. 204, 65–70.

    Google Scholar 

  • Carter, D.R., Gates, E.I., Harris, W.H. 1982. Strain-controlled fatigue of acrylic bone cement, J. Biomed. Mater. Res. 16, 647.

    Article  Google Scholar 

  • Charnley, J. 1964a. Anchorage of the femoral head prosthesis to the shaft of the femur, J. Bone Jt. Surg. 42B, 28.

    Google Scholar 

  • Charnley, J. 1964b. Bonding of prosthesis to bone by cement, J. Bone Jt. Surg. 46B, 518.

    Google Scholar 

  • Charnley, J. 1970. Acrylic Cement in Orthopaedic Surgery, E.& S, Livingstone, London.

    Google Scholar 

  • Cooper, J.R., Dowson, D., Fisher, J., Jobbins B. 1991. Ceramic bearing surfaces in total artificial joints: resistance to third body wear damage from bone cement particles, J. Med. Eng. Technol. 15, 63–67.

    Google Scholar 

  • Dall, D.M., Miles, A.W., Juby, G. 1986. Accelerated polymerization of acrylic bone cement using preheated implants, Clin. Orthop. Relat. Res. 211, 148.

    Google Scholar 

  • Dandurand, J., Delpech, V., Lebugle, A., Lamure, A., Lacabanne, C. 1990. Study of the mineral-organic linkage in an apatitic reinforced bone cement, J. Biomed. Mater. Res. 24, 1377.

    Article  Google Scholar 

  • Davies, J.P., Harris W.H. 1991. Effect of hand-mixing tobramycin on the fatigue strength of Simplex P, J. Biomed. Mater. Res. 25, 1409.

    Article  Google Scholar 

  • Davies, J.P., Harris, W.H. 1992. The effect of the addition of methylene blue on the fatigue strength of simplex P bone-cement, J. Appl. Biomat. 3, 81.

    Google Scholar 

  • Davies, J.P., O’Connor, D., Burke, D., Harris, W. 1989. Influence of antibiotic impregnation on fatigue life of Simplex P and Palacos R acrylic bone cements with and without centrifugation, J. Biomed. Mater. Res. 23, 379.

    Article  Google Scholar 

  • Fishbane, B.M., Pond, R.B. 1977. Stainless steel fiber reinforcement of polymethylmethacrylate, Clin. Orthop. Relat. Res. 128, 194.

    Google Scholar 

  • Freitag, T.A., Cannon, S.L. 1977. Fracture characteristics of acrylic bone cements. II. Fatigue, J. Biomed. Mater. Res. 11, 609.

    Article  Google Scholar 

  • Gentil, B., Paugam, C., Wolf, C., Lienhart, A., Augereau, B. 1993. Methylmethacrylate plasma levels during total hip arthroplasty, Clin. Orthop. Relat. Res. 287, 112.

    Google Scholar 

  • Ginebra, M.P., Aparicio, C., Albuixech, L., Fernández-Barragán, E., Gil, F.J., Planell, J.A., Morejón, L., Vázquez, B., San Román J., 1999. Improvement of the mechanical properties of acrylic bone cements by substitution of the radio-opaque agent, J. Mater. Sci., Materials in Medicine 10, 733–737.

    Google Scholar 

  • Ginebra, M.P., Albuixech, L., Fernández-Barragán, Aparicio, C., Gil, F.J., San Román, J., Vázquez, B., Planell, J.A. 2000a. Mechanical performance of acrylic bone cements containing different radiopacifying agents, Biomaterials, in press.

    Google Scholar 

  • Ginebra, M.P., Albuixech, L., Fernández-Barragán, Clément, J., Gil, F.J., Planell, J.A. 2000b. Effect of different radiopacifying agents on the fatigue crack propagation of acrylic bone cements, Proceedings of the 9th International Conference on Polymers in Medicine and Surgery, pp. 288–295, IOM Communications Ltd, London.

    Google Scholar 

  • Guida, G., Riccio, V., Gatto, S., Migliaresi, C., Nicodemo, L., Nicolais, L., Palomba, C. 1984. A glass bead composite acrylic bone cement, in: Biomaterials and Biomechanics (P. Ducheyne, G. Van der Perre, A.E. Aubert, eds.), p. 19, Elsevier Science Publ., Amsterdam.

    Google Scholar 

  • Haas, S.S., Brauer, G.M., Dickson, G. 1975. A characterization of polymethylmethacrylate bone cement, J. Bone Jt. Surg. 57A(3), 380.

    Google Scholar 

  • Hailey, J.L., Turner, I.G., Miles, A.W., Price, G. 1994. The effect of post-curing chemical bone changes on the mechanical properties of acrylic bone cement, J. Mater. Sci. Materials in. Medicine, 5, 617–621.

    Google Scholar 

  • Henning, W., Blencke, B.A., Brömer, H., Deutscher, K.K., Gross, A., Ege W. 1979. Investigations with bioactivated polymethylmethacrylates, J. Biomed. Mater. Res. 13, 89.

    Google Scholar 

  • Henrich, D.E., Cram, A.E., Park, J.B., Liu, Y.K., Reddi, H. 1993. Inorganic bone and demineralized bone matrix impregnated bone cement: A preliminary in vivo study, J. Biomed. Mater. Res. 27, 277.

    Article  Google Scholar 

  • Isaac, G.H., Atkinson, J.R., Dowson, D. Kennedy P.D., Smith M.R. 1987. The causes of femoral head roughening in explanted Charnley hip prostheses, Eng. Med. 16, 167–173.

    Article  Google Scholar 

  • Jaffe, W.L., Rose, R.M., Radin, E.L. 1974. On the stability of the mechanical properties of self-curing acrylic bone cement, J. Bone Jt. Surg. 56A(8), 1711.

    Google Scholar 

  • James, M.L. 1987. Complicaciones anestésicas y metabólicas in: Complicaciones de las artroplastias males de cadera (R.S.M Ling, ed.), Salvat Editores, Barcelona.

    Google Scholar 

  • Jasty, M., Jiranek, W., Harris, W. 1992. Acrylic fragmentation in total hip replacements and its biological consequences, Clin. Orthop. Relat. Res. 285, 116.

    Google Scholar 

  • Johnson, J.A., Provan, J.W., Krygier, J.J., Chan, K.H., Miller J. 1989. Fatigue of acrylic bone cement: effect of frequency and environment, J. Biomed. Mater. Res. 23, 819.

    Article  Google Scholar 

  • Krause, W., Mathis, R. 1988. Fatigue properties of acrylic bone cements: review of the literature, J. Biomed. Mater. Res. 22, 37.

    Google Scholar 

  • Krause, W., Mathis, R., Grimes, L. 1988. Fatigue properties of acrylic bone cement: S-N, P-N and P-S-N data, J. Biomed. Mater. Res. 22(A3), 221.

    Google Scholar 

  • Kusy, R.P. 1978. Characterization of self-curing acrylic bone cements, J. Biomed. Mater. Res. 12, 271.

    Article  Google Scholar 

  • Kusy, R.P., Katz, M.J. 1976. Effect of molecular weight on the fracture surface energy of poly(methyl methacrylate) in cleavage, J. Mater. Sci. 11, 1475.

    Google Scholar 

  • Lautenschlager, E.P., Jacobs, J.J. Marshall, G.W., Meyer, P.R. 1976. Mechanical properties of bone cements containing large doses of antibiotic powders, J. Biomed. Mater. Res. 10, 929.

    Google Scholar 

  • Lautenschlager, E.P., Stupp, S.I., Keller, J.C. 1984. Structure and properties of acrylic bone cement, in, Functional Behaviour of Orthopaedic Biomaterials. Volume II. Applications (P. Ducheyne, G.W. Hastings, eds.), pp 88ff., CRC Press Inc., Boca Raton.

    Google Scholar 

  • Lazarus, M.D., Cuckler, J.M., Schumacher, H.R., Ducheyne, P., Baker, D.G. 1994. Comparison of the inflammatory response to particulate polymethylmethacrylate debris with and without barium sulphate, J. Orthop. Res. 12, 532–541.

    Article  Google Scholar 

  • Lehnartz, E. 1959. Chemical Physiologie, S. 87, Springer-Verlag, Berlin.

    Google Scholar 

  • Lewis, G. 1989. The fracture toughness of biomaterials: I. Acrylic bone cements, J. Mater. Educ. 11, 429–479.

    Google Scholar 

  • Lewis, G. 1997. Properties of acrylic bone cement: state of the art review, J. Biomed. Mater. Res.(Appl. Biomater.) 38, 155–182.

    Google Scholar 

  • Linder, L., Romanus, M. 1976. Acute local tissue effects of polymerizing acrylic bone cement, Clin. Orthop. Relat. Res. 115, 303.

    Google Scholar 

  • Liu, Y.K., Park, J.B., Njus, G.O., Steinstra, D. 1987. Bone particle impregnated bone cement I. In vitro studies, J. Biomed. Mat. Res. 21, 247.

    Google Scholar 

  • Looney, M.A., Park, J.B. 1986. Molecular and mechanical property changes during aging of bone cement in vitro and in vivo, J. Biomat. Mater. Res. 20, 555.

    Google Scholar 

  • Low, R.F., Hulbert, S.F., Sogal, A. 1993. Mechanical properties of hydroxyapatite-polymethyl-methacrylate bone cement composite: hydroxyapatite embedded on surface and throughout cement matrix, in: Bioceramics Vol. 6 (P. Ducheyne, D. Christiansen, eds.), p. 339, Butterworth-Heinemann, London.

    Google Scholar 

  • Meyer, P.R., Lautenschlager, E.P., Moore, B.K., 1973, On the setting properties of acrylic bone cement, J. Bone Jt. Surg. 55A(1), 149.

    Google Scholar 

  • Migliaresi, C., Capuana, P. 1990. 2-Hydroxyethylmethacrylate modified bone cement, in: Clinical Implant Materials, Advances in Biomaterials Vol. 9, p. 141, Elsevier, Amsterdam.

    Google Scholar 

  • Milne, I.S. 1973, Hazards of acrylic bone cement, Anaesthesia 28, 538.

    Google Scholar 

  • Molino, L.N., Topoleski, L.D.T. 1996. Effect of BaSO4 on the fatigue crack propagation rate of PMMA bone cement, J. Biomed. Mater. Res. 31, 131–137.

    Article  Google Scholar 

  • Murakami, A., Behiri, J.C., Bonfield, W. 1988. Rubber-modified bone cement, J. Mater. Sci. 23, 2029.

    Google Scholar 

  • Nelson, R.C., Hoffman, R.O., Burton, J.A. 1978. The effect of antibiotic addition on the mechanical properties of acrylic cement, J. Biomed. Mater. Res. 12, 473.

    Article  Google Scholar 

  • Newens, A.F., Volz, R.G. 1972. Severe hypotension during prosthetic hip surgery with acrylic bone cement, Anesthesiology 36, 298.

    Google Scholar 

  • Nguyen, N.C., Maloney, W.J., Dauskardt, R.H. 1997. Reliability of PMMA bone cement fixation, fracture and fatigue crack-growth behaviour. J. Mater. Sci., Materials in Medicine 8, 473–483.

    Article  Google Scholar 

  • Noble, P.C. 1983. Selection of acrylic bone cements for use in joint replacement, Biomaterials 4, 94.

    Article  Google Scholar 

  • Norman, T.L., Kisch, V., Blaha, J.D., Gruen, T.A., Hustosky, K. 1995. Creep characteristics of hand and vacuum mixed acrylic bone cement at elevated stress levels, J. Biomed. Mater. Res. 29, 495–501.

    Article  Google Scholar 

  • Oysaed, H. 1990. Dynamic mechanical properties of multiphase acrylic sistems, J. Biomed. Mater. Res. 24, 1037.

    Google Scholar 

  • Oysaed, H., Ruyter, I.E. 1989. Creep studies of multiphase acrylic systems, J. Biomed. Mater. Res. 23, 719.

    Google Scholar 

  • Pascual, B., Vázquez, B., Gurruchaga, M., Goñi, I., Ginebra, M.P., Gil, F.J., Planell, J.A., Levenfeld, B., San Román, J. 1996. New aspects of the effect of size and size distribution on the setting parameters and mechanical properties of acrylic bone cement, Biomaterials 17, 509–516.

    Article  Google Scholar 

  • Pascual, B., Goñi, I., Gurruchaga, M. 1999a. Characterization of a new acrylic bone cement based on a (methyl methacrylate/1-hydroxypropyl methacrylate) monomer, J. Biomed. Mater. Res. Appl. Biomater. 48, 447–457.

    Article  Google Scholar 

  • Pascual, B., Gurruchaga, M., Ginebra, M.P., Gil, F.J., Planell, J.A., Vázquez, B., San Román, J., Goñi I. 1999b. Modified acrylic bone cement with high amounts of ethoxytriethyleneglycol methacrylate, Biomaterials 20(5), 453–463.

    Google Scholar 

  • Pilliar, R.M., Blackwell, R., MacNab I., Cameron, H.V. 1976. Carbon fiber-reinforced bone cement in orthopaedic surgery, J. Biomed. Mater. Res. 10, 893.

    Article  Google Scholar 

  • Pourdeyhimi, B., Wagner, H.D. 1989. Elastic and ultimate properties of acrylic bone cement reinforced with ultra-high-molecular weight polyethylene fibers, J. Biomed. Mater. Res. 23, 63.

    Google Scholar 

  • Rimnac, C, Wright, T., McGill, D. 1986. The effect of centrifugation on the fracture properties of acrylic bone cements, J. Bone Jt. Surg. 68A, 281.

    Google Scholar 

  • Sabokbar, A., Fujikawa, Y., Murray, D.W., Athanasou, N.A. 1997. Radio-opaque agents in bone cement increase bone resorption, J. Bone Jt. Surg., Br. Vol. 79B, 129–134.

    Google Scholar 

  • Saha, S., Pal, S. 1984. Mechanical properties of bone cement: a review, J. Biomed. Mater. Res. 18, 435.

    Article  Google Scholar 

  • Saha, S., Pal, S. 1986. Mechanical characterization of commercially made carbon-fiber-reinforced polymethylmethacrylate, J. Biomed. Mater. Res. 20, 817.

    Article  Google Scholar 

  • Soltész, U., Ege, W. 1992. Fatigue behavior of different acrylic bone cements, Proceedings of the 4th World Biomaterials Congress, p. 90.

    Google Scholar 

  • Tanzi, M.C., Sket, I., Gatti, A.M., Monari, E. 1991, Physical characterization of acrylic bone cement cured with new accelerator system, Clin. Mater. 8, 131.

    Google Scholar 

  • Topoleski, L.D.T., Ducheyne, P., Cuckler, J.M. 1990, A fractographic analysis of in vivo poly(methyl methacrylate) bone cement failure mechanisms, J. Biomed. Mater. Res. 24, 135.

    Article  Google Scholar 

  • Topoleski, L.D.T., Ducheyne, P., Cuckler J.M. 1991. Fatigue properties and failure mechanisms of titanium fiber reinforced and pore reduced polymethylmethacrylate bone cement, Proceedings of the 17th Annual Meeting of the Society for Biomaterials, p. 48.

    Google Scholar 

  • Topoleski, L.D.T., Ducheyne, P., Cuckler, J.M. 1992. The fracture toughness of titanium-fiber reinforced bone cement, J. Biomed. Mater. Res. 26, 1599.

    Article  Google Scholar 

  • Trap, B., Wolff, P., Jensen, J.S. 1992. Acrylic bone cements: residuals and extractability of methacrylate monomers and aromatic amines, J. Appl. Biomater. 3, 51.

    Article  Google Scholar 

  • Treharne, R.W., Brown, N. 1975. Factors influencing the creep behavior of Poly(methyl methacrylate) cements, J. Biomed. Mater. Res. Symp. 6, 81.

    Google Scholar 

  • Turner, R.C. 1984. Free radical decay kinetics in PMMA bone cement, J. Biomed. Mater. Res. 18, 467.

    Article  Google Scholar 

  • Vázquez, B., Elvira, C., Levenfeld, B., Pascual, B., Goñi, I., Gurruchaga, M, Ginebra, M.P., Gil, F.X., Planell, J.A., Liso, P.A., Rebuelta, M., San Román, J. 1997. Application of new tertiary amines with reduced toxicity to the curing process of acrylic bone cements, J. Biomed. Mater. Res. 34, 129–136.

    Google Scholar 

  • Vázquez, B., Ginebra, M.P., Gil, F.J., Planell, J.A., López Bravo, A., San Román, J.,1999. Radiopaque acrylic cements prepared with a new acrylic derivative of iodo-quinoline, Biomaterials 20, 2047–2053.

    Google Scholar 

  • Verdonschot, N., Huiskes, R. 1995. Dynamic creep behavior of acrylic bone cement, J. Biomed. Mater. Res. 29, 575–581.

    Article  Google Scholar 

  • Vila, M. M. 1992, Ph.D. Thesis, Universitat Politècnica de Catalunya.

    Google Scholar 

  • Vila, M.M., Ginebra, M.P., Gil, F.J., Planell, J.A. 1999a. Effect of porosity and environment on the mechanical properties of acrylic bone cement modified with acrylonitrile-butadienestyrene particles: Part I. Fracture toughness, J.Biomed. Mater. Res. (Appl. Biomater.) 48, 121–127.

    Google Scholar 

  • Vila, M.M., Ginebra, M.P., Gil, F.J., Planell, J.A., 1999b, Effect of porosity and environment on the mechanical properties of acrylic bone cement modified with acrylonitrile-butadiene-styrene particles: Part II. Fatigue crack propagation, J.Biomed. Mater. Res. (Appl. Biomater.) 48, 128–134.

    Google Scholar 

  • Wang, C.T., Pilliar, R.M. 1989. Fracture toughness of acrylic bone cements, J. Mater. Sci. 24, 3725.

    Google Scholar 

  • Ward, I.M. 1983. Mechanical properties of solid polymers, 2nd edn., John Wiley & Sons, Bristol.

    Google Scholar 

  • Willert, H.G., Bertram, H., Buchhorn, G.H. 1990. Osteolysis in alloarthroplasty of the hip: the role of bone cement fragmentation, Clin. Orthop. Relat. Res. 258, 108.

    Google Scholar 

  • Wixson, R.L. 1992. Do we need to vacuum mix or centrifuge cement?, Clin. Orthop. Relat. Res. 285, 84.

    Google Scholar 

  • Wright, T.M., Robinson, R.P. 1982. Fatigue crack propagation in polymethylmethacrylate bone cements, J. Mater. Sci. 17, 2463–2468.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Kluwer Academic Publishers

About this chapter

Cite this chapter

Ginebra, MP., Gil, FJ., Planell, JA. (2002). Acrylic Bone Cements. In: Barbucci, R. (eds) Integrated Biomaterials Science. Springer, Boston, MA. https://doi.org/10.1007/0-306-47583-9_20

Download citation

  • DOI: https://doi.org/10.1007/0-306-47583-9_20

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-306-46678-6

  • Online ISBN: 978-0-306-47583-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics