Skip to main content

The Material and Mechanical Properties of the Healthy and Degenerated Intervertebral Disc

  • Chapter
Integrated Biomaterials Science

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 379.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Acaroglu, E.R., Setton, L.A., Iatridis, J.C., Weidenbaum, M., Foster, R.J., Mow, V.C. 1995. Degeneration and aging affect the tensile behavior of human lumbar annulus fibrosus, Spine 20(24), 2690–2701.

    Google Scholar 

  • Adams, M.A., Hutton, W.C. 1983. The effect of posture on the fluid content of lumbar intervertebral discs, Spine 8, 665–671.

    Google Scholar 

  • Adams, M.A., McNally, D.S., Wagstaff, J., Goodship, A.E. 1993. Abnormal stress concentrations in lumbar intervertebral discs following damage to the vertebral body: a cause for disc failure, Eur. Spine J. 1, 214–221.

    Article  Google Scholar 

  • Adams, M.A., McMillan, D.W., Green, J.P., Dolan, P. 1996. Sustained loading generates stress concentrations in lumbar intervertebral discs, Spine 21(4), 434–438.

    Article  Google Scholar 

  • Alkalay, R.N., Patenick, A., Urry, D., Glazer, P.A. 2001. The use of a novel bio-elastic polymer for the restoration of the function of partially denucleated intervertebral disc: experimental study, in press.

    Google Scholar 

  • Bao, Q.B., Higham, P.A. 1993. Hydrogel intervertebral disc nucleus, US Patent 5,192,326.

    Google Scholar 

  • Baumgartner, W. 1992. Intervertebral prosthesis, US Patent 5,171,280.

    Google Scholar 

  • Bayliss, M.T., Jhonstone, B., O’Brien, J.P. 1988. Proteoglycan synthesis in the human intervertebral disc: variation with age, region and pathology, Spine 13, 972–981.

    Google Scholar 

  • Best, B.A., Setton L.A., Guilak, F., Ratcliffe, A., Weidenbaum, M., Mow, V.C. 1989. Permeability and compressive stiffness of annulus fibrosus: variation with site and composition, 35th Annual Meeting Orthopaedic Research Society, p. 354.

    Google Scholar 

  • Best, B.A., Guilak, F., Setton, L.A., Zhu, W., Saed-Nejed, F., Ratclifte, A. 1994. Compressive mechanical properties of the human annulus fibrosus and their relationship to biochemical composition, Spine 19(2), 212–221.

    Google Scholar 

  • Bodine, A.J., Ashany, D., Hayes, W.C., White, A.A. 1982. Viscoelastic shear modulus of the human intervertebral disc, 28th Annual Meeting Orthopaedic Research Society, p. 330.

    Google Scholar 

  • Botsford, D.J., Esses, S.I., Ogilvie-Harris, D.J. 1994. In vivo diurnal variation in intervertebral disc volume and morphology, Spine 19, 935–940.

    Google Scholar 

  • Brenick, S., Caillet, R. 1982. Vertebral end plate changes with aging of the human vertebrae, Spine 7(2), 97–102.

    Google Scholar 

  • Brenick, S., Caillet, R., Levy, B.M. 1980. The maturation and aging of the vertebrae of marmosets, Spine 5, 519–524.

    Google Scholar 

  • Brinckmann, P., Frobin, W., Hierholzer, E., Horst, M. 1983. Deformation of the end-plate under axial loading of the spine, Spine 8, 851–856.

    Google Scholar 

  • Broberg, K.B. 1983. On the mechanical behavior of intervertebral discs, Spine 8(2), 151–161.

    Google Scholar 

  • Broberg, K.B. 1993. Slow deformation of intervertebral discs, J. Biomech. 26(4,5), 501–512.

    Google Scholar 

  • Brown, T., Hansen, R.J., Yorra, A.J. 1957. Some mechanical test on the lumbosacral spine with particular reference to the intervertebral discs, J. Bone Jt. Surg., 39A(7), 1135–1164.

    Google Scholar 

  • Buckwalter, J.A. (ed.). 1982. Fine structural studies of human intervertebral discs, in: Idiopathic Low Back Pain (A.A. White, S.L. Gordon, eds.), pp. 108–143, C.V. Mosby, St Louis.

    Google Scholar 

  • Buckwalter, J.A., Smith, K.C., Kazarien, L.E., Rosenberg, L.C. 1989. Articulator cartilage and intervertebral proteoglycans differ in structure, J. Orthop. Res. 7, 146–151.

    Article  Google Scholar 

  • Buckwalter, J.A., Woo, S.L.Y., Goldberg, V.M. 1993. Soft tissue aging and musculoskeletal function, J. Bone Jt. Surg. 75, 1533–1548.

    Google Scholar 

  • Burns, M.L., Kalpes, I., Kazarian, L.E. 1984. Analysis of compressive creep beahviour of the intervertebral unit subjected to uniform axial loading using exact parametric solution equations of Kelvin-solid models: Part I. Human intervertebral joints, J. Biomech. 17, 113–130.

    Article  Google Scholar 

  • Butler, W.F. (ed.) 1989. Comparative anatomy and development of mammalian disc, in: The Biology of the Intervertebral Disc (P. Ghosh, ed.), pp. 84–108, CRC Pres, Boca Raton.

    Google Scholar 

  • Büttner-Janz, K., Schellnack, K., Zipple, H. 1989. Biomechanics of the SB Charitè lumbar intervertebral disc endoprosthesis, Int. Orthop. (SICOT) 13, 173–176.

    Google Scholar 

  • Dickson, I.R., Happey, F., Pearson, C.H. 1967. Variations in protein components of the human intervertebral disc with age, Nature 215, 50–53.

    Google Scholar 

  • Ebara, S., latridis, J.C., Setton, L.A., Foster, R.J., Mow, V.C., Weidenbaum, M. 1996. Tensile properties of nondegenerated human lumbar annulus fibrosus, Spine 21(4), 452–461.

    Article  Google Scholar 

  • Edeland, H.G. 1989. Some additional suggestions for an intervertebral disc prosthesis, J Biomed. Mater. Res., Appl. Biomater. 23, 189–194.

    Google Scholar 

  • Eyre, D.R., Benya, P., Buckwalter, J.A., Gatersion B., Heinegard, D., Oegema, T., et al, (eds.). 1989. Basic science perspectives. Part B. Intervertebral disc, in: New Perspective on Low Back Pain (J.W. Frymoyer, S.L. Gordon, eds.), pp. 147–207, American Academy of Orthopaedic Surgeons, Park Ridge, IL.

    Google Scholar 

  • Farfan, H.F., Cossette, J.W., Robertson, G.H., Wells, R.V., Kraus, H. 1970. The effects of torsion on the lumbar intervertebral joints: the role of torsion in the production of disc degeneration, J. Bone Jt. Surg. 52 (Am. Ed), 468–497.

    Google Scholar 

  • Farfan, H.F., Huberdeau, R. M., Dubow, H.I. 1972. Lumbar intervertebral disc degeneration: The influence of geometric features on the pattern of disc degeneration-A postmortem study, J. Bone Jt. Surg., 54–A(3), 492–510.

    Google Scholar 

  • Fassio, B., Ginestie, J.F. 1978. Disc prosthesis made of silicone. Experimental study and first clinical cases, Nouv. Presse Med. 21, 207.

    Google Scholar 

  • Fujita, Y., Lotz, C., Soejima, O. 1995. Site specific radial tensile properties of the lumbar annulus fibrosus, 37th Annual Meeting Orthopaedic Research Society, p. 673.

    Google Scholar 

  • Galante, J.O. 1967. Tensile properties of the human lumbar annulus fibrosus, Acta Orthop. Scand., 100 (suppl.).

    Google Scholar 

  • Granata, K.P., Marras, W.S. 1993. An EMG-assisted model of loads on the lumbar spine during asymmetric trunk extensions, J. Biomech. 26(12), 1429–1438.

    Article  Google Scholar 

  • Griffith, S.L., et al. 1994. A multicenter retrospective study of the clinical results of the LINK SB Charite intervertebral prosthesis, Spine 19, 1842–1949.

    Google Scholar 

  • Gunzburg, R., Parkinson, R., Moore, R. 1992. A cadaveric study comparing discography, MRI, histology, and mechanical behavior of the human lumbar disc, Spine 17, 417–423.

    Google Scholar 

  • Hall, A.C., Urban, J.P.G., Gehl, K.A. 1991. The effects of hydrostatic pressure on matrix synthesis in articular cartilage, J. Orthop. Res. 9, 1–10.

    Article  Google Scholar 

  • Hedman, T.P., el al. 1988. Artificial spinal disc, US Patent 4,759,769.

    Google Scholar 

  • Hedman, T.P., et al. 1991. Design of an intervertebral disc prosthesis, Spine 16, S256–S260.

    Google Scholar 

  • Holmes, H.M., Lai, W.M., Mow, V.C. 1990. The nonlinear characteristics of soft gels and hydrated connective tissue in ultrafiltration, J. Biomech. 23, 1145–1156.

    Article  Google Scholar 

  • Holmes, A.D., Hukins, D.W.L., Freemont, A.J. 1993. End-plate displacement during compression of lumbar vertebra-disc-vertebra segments and mechanisms of failure, Spine 18(1), 128–135.

    Google Scholar 

  • Iatridis, J.C., et al. 1997. The viscoelastic behavior of the non-degenerated human lumbar nucleus pulposus in shear, J. Biomech., 30(10), 1005–1013.

    Article  Google Scholar 

  • Iatridis, J.C., et al. 1998. Degeneration affects the anisotropic and nonlinear behaviors of human anulus fibrosus in compression, J. Biomech. 31(6), 535–544.

    Article  Google Scholar 

  • Jhonstone, B., Bayliss, M.T. 1995. The large proteoglycans of the human intervertebral disc: changes in their biosynthesis and structure with age, topography, and pathology, Spine 20(6), 674–684.

    Google Scholar 

  • Kalpes, I., Kazarian, L.E., Burns, M.L. 1984. Analysis of compressive creep beahviour of the intervertebral unit subjected to uniform axial loading using exact parametric solution equations of kelvin-solid models-Part I. Rhesus monkey intervertebral joints, J. Biomech. 17, 131–136.

    Google Scholar 

  • Kasra, M., Shirazi-Adl, A., Drouin, G. 1982. Dynamics of human lumbar intervertebral joints: Experimental and finite element investigations, Spine 17(1), 93–101.

    Google Scholar 

  • Kazarian, L.E. 1975. Creep characteristics of the human spinal column, Orthop. Clinics North America 6(1), 3–18.

    Google Scholar 

  • Keller, T.S., Spengler, D.M., Hansson, T.H. 1987. Mechanical behavior of human lumbar spine I. Creep analysis during static compressive loading, J. Orthop. Res. 5, 467–478.

    Article  Google Scholar 

  • Kelsly, J.L. 1980. Epidemiology and impact of low back pain, Spine 5, 133–142.

    Google Scholar 

  • Kirsmer, M., Hiad, C., Rabi, W. 1996. The contribution of annulus fibers to torque resistance, Spine 21(22), 2551–2557.

    Google Scholar 

  • Kostuik, J.P. 1997. Intervertebral disc replacement: experimental study, Clin, Orthop. Relat. Res. 337, 27–41.

    Google Scholar 

  • Kraemer, J.D., Kolditz, M., Gowin, R. 1985. Water and electrolyte content of the human intervertebral disc under variable load, Spine 10, 69–71.

    Google Scholar 

  • Krag, M.H., et al. 1993. Effect of denucleation and degeneration grade on intervertebral disc stress relaxation, 39th Annual Meeting, Orthopaedic Research Society.

    Google Scholar 

  • Lai, W.M., How, J., Mow, V.C. 1991. A triphasic theory for the swelling and deformation behavior of cartilage tissue, J. Biomech. Eng. 113, 145–158.

    Google Scholar 

  • Lee, C.K., Langrana, N.A. 1984. Lumbosacral spinal fusion. A biomechanical study, Spine 9, 574–581.

    Google Scholar 

  • Lee, C.K., Langrana, N.A., Alexander, H., Clemow, A.J., Chen, E.H., Parsons, J.R. 1990. Functional and biocompatible intervertebral disc spacer, US Patent 4,911,718.

    Google Scholar 

  • Lemaire, J.P., Skalli, W., Lavaste, P., Templier, A., Mendes, F., Diop, A., et al. 1997. Intervertebral disc prosthesis. Results and prospects for the year 2000, Clin. Orthop. Relat. Res. 337, 64–76.

    Google Scholar 

  • Leong, J.C., Chun, S.Y., Grange, W.J., Fang, D. 1983. Long term results of lumbar intervertebral disc prolapse, Spine 8(7), 793–799.

    Google Scholar 

  • Marchand, F., Ahmed, A.M., 1989. Mechanical properties and failure mechanisms of the lumbar disc annulus, in: 35th Annual Meeting, Orthopaedic Research Society.

    Google Scholar 

  • Marchand, F., Ahmad, A. M. 1990. Investigation of the laminate structure of lumbar disc annulus fibrosus, Spine 15(5), 402–408.

    Google Scholar 

  • Markolf, K.L. 1972. Deformation of the thoracolumbar intervertebral joint in response to external loads: a biomedical study using autopsy material, J. Bone Jt. Surg. 54A: 511–533.

    Google Scholar 

  • Markolf, K.L., Morris, J.M. 1974. The structural components of the intervertebral disc: A study of their contribution to the ability of the disc to withstand compressive forces, J. Bone Jt. Surg. 56A(4), 675–684.

    Google Scholar 

  • Maroudas, A., et al. 1975. Factors involved in the nutrition of the human lumbar intervertebral disc: cellularity and diffusion of glucose in vitro, J. Anat. 120, 113–130.

    Google Scholar 

  • McGill, S.M., Norman, R.W. 1985. Dynamically and statically determined low back moments during lifting, J. Biomech. 18(12), 877–885.

    Article  Google Scholar 

  • McGill, S.M., Norman, R.W. 1986. Partitioning of the L4-L5 dynamic moment into disc, ligamentous, and muscular components during lifting, Spine 11(7), 666–677.

    Google Scholar 

  • McNally, D.S., Adams, M.A. 1992. Internal intervertebral disc mechanics as revealed by stress profilometry, Spine 17(1), 66–73.

    Google Scholar 

  • McNally, D.S., Adams, M.A., Goodship, A.E. 1992. Measurement of stess distribution within intact loaded intervertebral disc, in: Experiemental Mechanics (E.G Little, ed.), pp. 139–150, Elevier Science Publishers B.V. Amsterdam.

    Google Scholar 

  • Mow, V.C., et al., (eds.). 1990. Biphasic and quasilinear viscoelastic theories for hydrated soft tissue, in: Biomechanics of Diarthrodial Joints (V.C. Mow, A. Ratcliffe, S.L.Y. Woo, eds.), pp. 215–260, Springer-Verlag, New York.

    Google Scholar 

  • Nachemson, A.L. 1960. Lumbar interdiscal pressure, Acta Orthop. Scand. 43 (Suppl), 1–104.

    Google Scholar 

  • Ogata, K., Whiteside, L.A. 1981. Nutritional pathways of the intervertebral disc: An experimental study using hydrogen washout technique, Spine 6(3), 211–216.

    Google Scholar 

  • Ordway, N.R., Han, Z.H., Bao, Q.B. 1994. Biomechanical evaluation for the intervertebral hydrogel nucleus, 9th Annual Meeting of the North American Spine Society, Minneapolis, MN.

    Google Scholar 

  • Osti, O.L., Vernon-Roberts, B., Fraser, R.D. 1990. Annulus tears and intervertebral degeneration: an experimental study using animal models, Spine 15, 762–767.

    Google Scholar 

  • Panagiotacopulos, N.D., Pope, M.H., Krag, M.H., Bloch, R.A. 1987. Mechanical model for the human intervertebral disc, J. Biomech. 20(9), 839–850.

    Article  Google Scholar 

  • Panjabi, M.M., White, A.A. (eds.). 1990. Clinical Biomechanics of the Spine, J.B. Lippincott Company, Philadelphia.

    Google Scholar 

  • Parsons, J.R., et al. 1992. Functional and biocompatible intervertebral disc spacer containing elastomeric material of varying hardness, US Patent 5,171,281.

    Google Scholar 

  • Patil, A. 1982. Artificial intervertebral disc, US Patent 4,309,777.

    Google Scholar 

  • Pfeiffer, M., Griss, P., Franke, P. 1994. Degeneration model of the porine lumbar motion segment: effect of various interdiscal procedures, Eur. Spine J. 5, 8–16.

    Google Scholar 

  • Ray, C.D., Corbin, T.P. 1990. Prosthetic disc containing therapeutic material, US Patent 4,904,280.

    Google Scholar 

  • Repanti, M., Korovessis, P.G., Stamatakis, M.V., Spastris, P., Kosti, P. 1998. Evaluation of disc degeneration in lumbar spine: A comparative histological study between herniated postmortem retrieved disc specimens, J Spinal Disorders 11(1), 41–45.

    Google Scholar 

  • Roberts, S., Menage, J., Urban, J.P.G. 1989. Biomechanical and structural properties of cartilage end-plate and it relation to the intervertebral disc, Spine 14, 166–174.

    Google Scholar 

  • Roy-Camille, R., Saillant, G., Lavaste., F. 1978. Experimental study of lumbar disc replacement, Rev. Chir. Orthop. Repar. Appar. Mot. 64 (Suppl II), 106–107.

    Google Scholar 

  • Salib, R.M., Pettine, K. A. 1989. Intervertebral disk arthroplasty, US Patent 5,258,031.

    Google Scholar 

  • Scheider, P.G., Oyen, R. 1974. Plastic surgery on intervertebral disc. Part I: intervertebral disc replacement in the lumbar region with silicone rubber. Theoretical and experimental studies, Z. Orthop. 112, 1078–1086.

    Google Scholar 

  • Setton, L.A., Zhu, W.B., Mow, V.C. 1991. Compressive viscoelastic properties of cartilaginous endplates of lumbar intervertebral discs, 37th Annual Meeting, Orthopaedic Research Society.

    Google Scholar 

  • Setton, L.A., et al. 1993. Compressive properties of cartilaginous end plate of the Babon lumbar spine, J. Orthop. Res. 11, 228–239.

    Article  Google Scholar 

  • Shah, J.S., Hampson, W.G.J., Jayson, M.I.V. 1978. The distribution of surface strain in cadaveric lumbar spine, J. Bone Jt. Surg. 60(Br), 246–251.

    Google Scholar 

  • Shirazi-Adl, A. 1989. On the fibre composite material models of disc annulus-comparison of predicted stresses, J. Biomech. 22(4), 357–365.

    Article  Google Scholar 

  • Shirazi-Adl, A. 1991. Mechanical role of disc annulus fibers and matrix in poroelastic creep response of a human lumbar disc, 37th Annual Meeting, Orthopaedic Research Society, p. 241.

    Google Scholar 

  • Skaggs, D.L., Gibbons, J.C., Richardson, L.C., Foster, R.J., Weidenbaum, M. 1993. Regional variations in the tensile properties and biochemical compositions of single lamellae of human annulus fibrosus, 39th Annual Meeting, Orthopaedic Research Society, p. 420.

    Google Scholar 

  • Skaggs, D.L., et al. 1994. Regional variation in tensile properties and biochemical composition of the human lumbar anulus fibrosus, Spine 19(12), 1310–1319.

    Google Scholar 

  • Steffee, A.D. 1991. Artificial disc, US Patent 5,071,437.

    Google Scholar 

  • Stokes, I., Greenapple, D.H. 1985. Measurement of surface deformation of soft tissue, J. Biomech. 18, 1–7.

    Article  Google Scholar 

  • Stubstad, J.A., Urbaniak, J.R., Khan, P. 1975. Prosthesis for spinal repair, US Patent 3,867,728,25.

    Google Scholar 

  • Tanaka, M., Nakahara, S., Inoue, H. 1993. A pathologic study of discs in the elderly, Spine 18, 1456–1462.

    Google Scholar 

  • Trafimow, J.H., et al. 1993. The effects of quadriceps fatigue on technique of lifting, Spine 18(3), 364–367.

    Article  Google Scholar 

  • Trout, J.J., Buckwalter, J.A., Moore, K.C. 1982a. Ultrastructure of human intervertebral disc I. Cells of the nucleus pulposus, Anat. Rec. 204, 307–314.

    Article  Google Scholar 

  • Trout, J.J., et al. 1982b. Ultrastructure of human intervertebral disc II. Changes in notocordal cells with age, Tissue Cell 14, 359–369.

    Article  Google Scholar 

  • Tsuji, H., Hirano, N., Ohsima, H., Ishihara, H., Terahata, N., Motoe, T., 1993. Structural variation of the anterior annulus fibrosus in the development of human lumbar intervertebral disc, Spine, 18(2), 204–210.

    Google Scholar 

  • Urban, J.P.G. (ed.). 1993. The effect of physical factors on disc cell metabolism, in: Musculoskeletal Soft Tissue Aging: Impact on Mobility (J.A. Buckwalter, V.M. Goldberg, S.L.Y. Woo, eds.), American Academy of Orthopeadic Surgeons, Rosemont, IL.

    Google Scholar 

  • Urba, J.P.G., Maroudas, A., Swelling of the intervertebral disc in vitro, Connect. Tissue Res. 9, 1–10.

    Google Scholar 

  • Urban, J.P.G., McMullin, J.F. 1988. Swelling pressure of the lumbar intervertebral discs: Influence of proteoglycan and collagen contents, Biorheology 13, 179–187.

    Google Scholar 

  • Vernon-Roberts, B. (ed.). 1987. The pathology and interrelation of intervertebral disc lesions, osteoarthrosis of apophyseal joints, lumbar spondylosis and low back pain, in: The Lumbar Spine and Back Pain (M.D.V. Jayson, ed.), pp. 83–114, Churchill Livingstone, New York.

    Google Scholar 

  • Virgin, W. 1951. Experimental investigations into the physical properties of intervertebral discs, J. Bone Jt. Surg. 33B(4), 607–611.

    Google Scholar 

  • White, A.A., Edwards, W.T, Liberman, D., Hayes, W.C., Lewinnek, E.G., (eds.). 1981. Biomechanics of lumbar spine and sacroiliac articulation: relevance to idiopathic low back pain, in: Symposium on Idiopathic Low Back Pain (A.A. White, S.L. Gordon, pp. 296–322, C.V. Mosby, St. Louis.

    Google Scholar 

  • Zippel, H. (ed.). 1991. “Charitè modular”: concept, experience and results, in: The Artificial Disc (M. Brock, H.M. Mayer, K. Weigel, eds.), pp. 69–77, Springer, Berlin.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Kluwer Academic Publishers

About this chapter

Cite this chapter

Alkalay, R. (2002). The Material and Mechanical Properties of the Healthy and Degenerated Intervertebral Disc. In: Barbucci, R. (eds) Integrated Biomaterials Science. Springer, Boston, MA. https://doi.org/10.1007/0-306-47583-9_13

Download citation

  • DOI: https://doi.org/10.1007/0-306-47583-9_13

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-306-46678-6

  • Online ISBN: 978-0-306-47583-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics