Skip to main content

Surface Morphology of Metal Electrodeposits

  • Chapter
Fundamental Aspects of Electrometallurgy
  • 1213 Accesses

Conclusions

It is obvious from the above discussions that the formation of disperse deposits is required only in electrodeposition of metal powders. In this situation, the deposition must be under complete diffusion control. Other types of disperse deposits are undesired and their appearance can easily be avoided by decreasing the exchange current density of the deposition processes (by complexing depositing ions or by appropriate organic additives) and maintaining the deposition overpotential below the values of the critical overpotential for dendritic growth initiation. It seems that in the case of whiskers nothing can be said in advance about their appearance.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Further Readings

  1. Gutzov I., Kinetics of electrolytic phase-formation under galvanostatic conditions (in Bulgarian). Izv. Inst. Fiz. Chim. Bulgar. Acad. Nauk. 1964; 4:69–88

    Google Scholar 

  2. Klapka V., To the problem of crystalization overvoltage during electrocrystallization of metals. Collection Czechoslov. Chem. Comun. 1970; 35:899–906

    CAS  Google Scholar 

  3. Pangarov N.A., Vitkova S.D. Prefered orientation of electrodeposited iron crystallites. Electrochim. Acta 1966; 11:1719–31

    CAS  Google Scholar 

  4. Pangarov N.A., Velinov V. The orientation of silver nuclei on a platinum substrate. Electrochim. Acta 1966; 11:1753–58

    CAS  Google Scholar 

  5. Pangarov N.A., Vitkova S.D., Uzunova I. Electronographic investigation of the degree of preffered orientation of nickel electrodeposits. Electrochim. Acta 1966; 11:1747–51

    CAS  Google Scholar 

  6. Markov I., Boynov A., Toshev S. Screening action and growth kinetics of electrodeposited mercury droplets. Electrochim. Acta 1973; 18:377–84

    Article  CAS  Google Scholar 

  7. Štrbac S., Rakočević Z., Popov K.I., Pavlović M.G., Petrović R. The role of surface defects in HOPG on the electrochemical and physical deposition of Ag. J. Serb. Chem. Soc. 1999; 64:483–93

    Google Scholar 

  8. Milchev A., Kruijt W.S., Sluyters-Rehbach M., Sluyters J.H. Distribution of the nucleation rate in the vicinity of a groving spherical cluster. Part 1. Theory and simulation results. J. Electroanal. Chem. 1994; 362:21–31; Kruijt W.S., SluytersRehbach M., Sluyters J.H., Milchev A. Distribution of the nucleation rate in the vicinity of a growing spherical cluster. Part 2. Theory of some special cases and experimaental results. J. Electroanal. Chem. 1993; 371:13–26

    Google Scholar 

  9. Popov K.I., Krstajić N.V. The mechanism of spongy electrodeposits formation on inert substrate at low overpotentials. J. Appl. Electrochem. 1983; 13:775–82

    Article  CAS  Google Scholar 

  10. Markov I. Saturation nucleus density in the electrodeposition of metal onto inert electrodes. I. Theory. Thin Solid Films. 1976; 35:11–20; Markov I., Stoycheva E. Saturation nucleus density in the electrodeposition of metal onto inert electrodes. II. Experimental. Thin Solid Films. 1976; 35:21–35

    CAS  ISI  Google Scholar 

  11. Popov K.I., Krstajić N.V., Popov S.R. Fundamental aspects of plating technology. II: Morphological aspects of metal electrodeposition from complex salt solutions. Surf. Technol. 1983; 20:203–08

    CAS  Google Scholar 

  12. Popov K.I., Grgur B.N., Stoilković E.R., Pavlović M.G., Nikolić N.D. The effect of deposition process exchange current density on the thin metal films formation on inert substrate. J. Serb. Chem. Soc. 1997; 62:433–42

    CAS  Google Scholar 

  13. Kaishew R., Mutafctschiew B. Electrolytic nucleation of mercury (in Germane). Electrochim. Acta 1965; 10:643–50

    Google Scholar 

  14. Erdey-Grúz T., Volmer Z. Overvoltage of metals (in German). Z. Phys. Chem. 1931; 157A: 165–81

    Google Scholar 

  15. Fetter, Klaus, Electrochemical Kinetics (in Russian). Moscow: Khimiya, 1967.

    Google Scholar 

  16. Fleischmann M., Thirsk H.R. The potentiostatic study of the growth of deposits on electrodes. Electrochim. Acta 1959; 1:146–60

    Article  CAS  Google Scholar 

  17. Kovarskii N.Ya., Lisov A.V. Periodicities in the surface structure of polycrystaline electrolytic deposits (in Russian). Elektrokhimiya 1984; 20:221–25

    CAS  Google Scholar 

  18. Kovarskii N.Ya., Lisov A.V. The reasons for the structure periodicity in the surfaces of electrolyte copper deposits (in Russian) Elektrokhimiya, 1984; 20:833–837

    CAS  Google Scholar 

  19. Kovarskii N.Ya., Arzhanova T.A. On the nature of the “no nucleation” zones in the electrocrystallization process (in Russian). Elektrokhimiya 1986; 20:452–58

    Google Scholar 

  20. Dimitrov A.T., Hadži-Jordanov S., Popov K.I., Pavlović M.G., Radmilović V. Electrodeposition of silver from nitrate solutions: Part I. Effect of phosphate ions on morphology. J. Appl. Electrochem. 1998; 28:791–96

    Article  CAS  Google Scholar 

  21. Popov K.I., Pavlović M.G., Grgur B.N., Dimitrov A.T., Hadži-Jordanov S. Electrodeposition of silver from nitrate solutions: Part II. Mechanism of the effect of phospate ions. J. Appl. Electrochem. 1998; 28:797–801

    Article  CAS  Google Scholar 

  22. Radmilović V., Popov K.I., Pavlović M.G., Dimitrov A.T., Hadži-Jordanov S. The mechanism of silver granular electrodeposits formation. J. Solid State Electrochem. 1998; 2:162–69

    Google Scholar 

  23. Popov K.I., Rodaljević Z.P., Krstajić N.V., Novaković S.D. Fundamental aspects of plating technology V: The effect of strongly adsorbed species on the morphology of metal deposit. Surf. Technol. 1985; 25:217–22

    Article  CAS  Google Scholar 

  24. Meibuhr S., Yeger E., Kozawa A., Hovorka F. The electrochemistry of tin I. Effect of nonionic addition agents on electrodeposition from stannous sulfate solutions. J. Electrochem. Soc. 1963; 110: 190–202

    CAS  Google Scholar 

  25. Kabanov, Boris N. Electrochemistry of Metal and Adsorption (in Russian), Moscow: Nauka, 1966.

    Google Scholar 

  26. Lorenz W. Oscillographic overvoltage measurements (in German). Z. Electrochem. 1954; 58:912–18

    CAS  Google Scholar 

  27. Popov K.I., Krstajić N.V., Popov S.R. Fundamental aspect of plating technology I: The determination of the optimum deposition current density. Surf. Technol. 1983; 20:199–202

    CAS  Google Scholar 

  28. Scharifker B., Hills G. Theoretical and experimental studies of multiple nucleation. Electrochim. Acta 1983; 28:879–89

    Article  CAS  Google Scholar 

  29. Milchev A. Role of the substrate state in electrochemical nucleation. Electrochim. Acta 1983; 28:947–53

    CAS  Google Scholar 

  30. Despić Aleksandar. “Deposition and Dissolution of Metals and Alloys.” In Comprehensive Treatise of Electrochemistry, Vol. 2, John O’M. Bockris, Brian E. Conway, Ernest Yeger, Ralph E. White, eds. New York, NY: Plenum Press, 1983.

    Google Scholar 

  31. Despić Aleksandar; Popov, Konstantin. “Transport Controlled Deposition and Dissolution of Metals.” In Modern Aspects of Electrochemistry, Vol. 7, Brian E. Conway, John O’M. Bockris, eds. New York, NY: Plenum Press, 1972.

    Google Scholar 

  32. Popov, Konstantin; Krstajić, Nedeljko; Čekerevac, Milan. “The Mechanism of Formation of Coarse and Disperse Electrodeposits.” In Modern Aspects of Electrochemistry, Vol. 30, Ralph E. White, Brian E. Conway, John O’M. Bockris, eds. New York, NY: Plenum Press, 1996.

    Google Scholar 

  33. Wagner, C. Contribution to the theory of Electropolishing. J. Electrochem. Soc. 1954; 101:225–28

    CAS  Google Scholar 

  34. Krichmar S.I. Study of the negative leveling effect in the deposition of silver from iodine electrolyte (in Russian). Elektrokhimiya 1965; 1:609–12

    CAS  Google Scholar 

  35. Despić A.R., Diggle J.W., Bockris J.O’M. Mechanism of formation of zinc dendrites. J. Electrochem. Soc. 1968; 115:507–08

    Google Scholar 

  36. Diggle J.W., Despić A.R., Bockris J.O’M. The mechanism of the dendritic electrocrystallization of zinc. J. Electrochem. Soc. 1969; 116:1503–14

    CAS  Google Scholar 

  37. Barton J.L., Bockris J.O’M. The electrolytic growth of dendrites from ionic solutions. Proc. Roy. Soc. London 1962; A268:485–505

    Google Scholar 

  38. Hamilton D.R. A theory of dendritic growth in electrolytes. Electrochim. Acta 1963; 8:731–40

    Article  CAS  Google Scholar 

  39. Popov K.I., Grgur B.N., Pavlović M.G., Radmilović V. The morphology of copper electrodeposits: I. The mechanism of copper cauliflower-like electrodeposit formation. J. Serb. Chem. Soc. 1993; 58:1055–62

    CAS  Google Scholar 

  40. Popov K.I., Despić A.R. A contribution of the study of surface roughness amplification in diffusion controlled metal deposition (in Serbian), Bull. Soc. Chim. Belgrade 1971; 36:173–77

    Google Scholar 

  41. Popov, Konstantin, Deposition and Dissolution of Metals in Diffusion Control Conditions (in Serbian), Ph.D. thesis, University of Belgrade, Belgrade, 1971.

    Google Scholar 

  42. Popov K.I., Pavlović Lj. J., Pavlović M.G., Čekerevac M.I. Electrode surface coarsening in potentiostatic copper electrodeposition. Surf. Coat. Technol. 1988; 35:39–45

    Article  CAS  Google Scholar 

  43. Popov K.I., Pavlović M.G., Pavlović Lj. J., Čekerevac M.I., Remović G.Ž. Electrode surface coarsening in pulsating overpotential copper electrodeposition. Surf. Coat. Technol. 1988; 34:355–63

    CAS  Google Scholar 

  44. Damjanović A. On the mechanism of metal electrocrystallization. Plating 1965; 52:1017–26

    Google Scholar 

  45. Popov K.I., Radmilović V., Grgur B.N., Pavlović M.G. The morphology of copper electrodeposits.II. The mechanism of carrot-like electrodeposits formation. J. Serb. Chem. Soc. 1994; 59:47–52

    CAS  Google Scholar 

  46. Kardos, Otto; Foulke Gardner. Applications of Mass Transfer Theory: “Electrodeposition on Small-Scale Profiles” In Advances in Electrochemistry and Electrochemical Engineering, Vol. 2., Paul Delahay, Charles W. Tobias, eds. New York, NY: Interscience, 1962.

    Google Scholar 

  47. Ibl, Norbert “Current distribution” In Comprehensive Treatise of Electrochemistry, Vol. 6, Ernest Yeger, John O’M. Bockris, Brian E. Conway, S. Sarangapani, eds. New York, NY: Plenum Press, 1983.

    Google Scholar 

  48. Kruglikov S.S., Kudriavtsev N.T., Vorobiova G.F., Antonov A.Ya. On the mechanism of leveling by addition agents in electrodeposition of metals. Electrochim. Acta 1965; 10:253–62

    Article  CAS  Google Scholar 

  49. Dukovic J.O., Tobias C.W. Simulation of leveling in electrodeposition. J. Electrochem. Soc. 1990; 137:3748–55

    CAS  Google Scholar 

  50. Đorđević, Spasoje; Maksimović, Miodrag; Pavlović, Miomir; Popov, Konstantin, Electroplating (in Serbian). Beograd: Tehnička Knjiga, 1997.

    Google Scholar 

  51. Krichmar S.I. On the theory of the levelling action in the electrochemical behaviour of metals (in Russian). Elektrokhimiya 1965; 1:858–61; Krichmar S.I. Leveling mechanism in the cathodic deposition of nickel. (in Russian) Zh.Fiz.Khim. 1965; 39:602–03

    CAS  Google Scholar 

  52. Krichmar S.I., Pronskaya A.Y. Experimental investigation of the levelling effect in the cathodic deposition of nickel from coumarine containing electrolytes (in Russian). Zh. Fiz. Khim. 1965; 39:741–44

    CAS  Google Scholar 

  53. Jordan K.G., Tobias C.W. The effect of inhibitor transport on leveling in electrodeposition. J. Electrochem. Soc. 1991; 138:1251–59

    CAS  Google Scholar 

  54. Dukovic J.O. Feature-scale simulation of resist-pattered electrodposition. IBM J. Res. Develop. 1993; 37:125–41

    Article  CAS  Google Scholar 

  55. Andricacos P.C., Uzoh C., Dukovic J.O. Horkans J., Deligianni H. Damascene copper electroplating for chip interconection. IBM J. Res. Develop. 1998; 42:567–74

    CAS  Google Scholar 

  56. Nikolić N.D., Rakočević Z., Popov K.I. The structure of bright metal electrodeposits. J. Electroanal. Chem., 2001; 514: 56–66, Nikolić N.D., Rakočević Z., Popov K.I. The STM analysis of a silver mirror surface. J. Serb. Chem. Soc., 2001; 66:723–7

    Google Scholar 

  57. Edwards J. The mechanism of electropolishing of copper in phosphoric acid solutions, I. Processes preceding the establishment of polishing conditions. J. Electrochem. Soc. 1953; 100:189c–94c. The mechanism of electropolishing of copper in phosphoric acid solutions, II. The mechanism of smothering. J. Electrochem. Soc. 1953; 100:223c–30c

    CAS  Google Scholar 

  58. Krichmar S.I., Pronskaya A.Ya. Study of the levelling effect in electrochemical polishing of metals (in Russian). Elektrokhimiya 1966; 2:69–73

    CAS  Google Scholar 

  59. Popov K.I., Pavlović M.G., Rakočević Z., Škorić D.M. The structure of bright copper surfaces. J. Serb. Chem. Soc. 1995; 60:873–78

    CAS  Google Scholar 

  60. Nichols R.J., Bach C.E., Meyer H. The effect of three organic additives on the structure and growth of electrodeposited copper: an in-sity scaning probe microscopy study. Ber. Bunsenges. Phys. Chem. 1993; 97:1012–20

    CAS  Google Scholar 

  61. Popov K.I., Krstajić N.V., Jerotijević Z.D., Marinković S.R. Electrocrystallization of silver from silver nitrate solutions at low overpotentials. Surf. Technol. 1985; 26:185–88

    CAS  Google Scholar 

  62. Popov K.I., Krstajić N.V., Popov S.R., Čekerevac M.I. Spongy electrodeposit formation. J. Appl. Electrochem. 1986; 16:771–774

    Article  CAS  Google Scholar 

  63. Popov K.I., Krstajić N.V., Simičić M.V., Bibić N.M. The initial stage of spongy electrodeposit formation on inert substrate. J. Serb. Chem. Soc. 1992; 57:927–33

    CAS  Google Scholar 

  64. Jakšić M.M. Impurity effects on the macromorphology of electrodeposited zinc I: Theoretical consideration and a review of existing knowledge. Surf. Technol. 1985; 24:193–17

    Google Scholar 

  65. Murashova, Irina; Pomosov, B. “Electrodeposition of metals in dendritic shapes” (in Russian) In Itogi nauki i tehniki, Seria Elektrokhimiya, Vol 30., Yu. M. Polukarov, ed. Moscow: Acad. Sci, 1989.

    Google Scholar 

  66. Wranglen G. Dendrites and growth layers in the electrocrystallization of metals. Electrochim. Acta 1960; 2:130–44

    CAS  Google Scholar 

  67. Bechtoldt C.J., Ogburn F., Smith J. Structure and morphology of electrodeposited molybdenum dendrites. J. Electrochem. Soc. 1968; 115:813–16

    CAS  Google Scholar 

  68. Faust J.W., John H.F. Growth twins in F.C.C metals. J. Electrochem. Soc. 1963; 110:463–64

    Google Scholar 

  69. Faust J.W., John H.F. Germanium dendritic studies, I Studies of thin structures and the seeding mechanism. J. Electrochem. Soc. 1961; 108:855–860

    CAS  Google Scholar 

  70. Justinjanović I.N., Despić A.R. Some observation on the properties of zinc electrodeposited from alkaline zincate solutions. Electrochim. Acta 1973; 18:709–12

    Google Scholar 

  71. Popov K.I., Čekerevac M.I. Dendritic electrocrystallization of cadmium from acid sulphate solution II: The effect of the geometry of dendrite precursors on the shape of dendrites. Surf Technol. 1989; 37:435–40

    CAS  Google Scholar 

  72. Newman, John, Electrochemical Systems, N.J: Prentice-Hall INC, Engelwood Clifts, 1973.

    Google Scholar 

  73. Popov K.I., Krstajić N.V., Pantelić R.M., Popov S.R. Dendritic electrocrystalisation of lead from lead nitrate solution. Surf. Technol. 1985; 26:177–83

    CAS  Google Scholar 

  74. Popov K.I., Pavlović M.G., Jovićević J.N. Morphology of Tin powder particles obtained in electrodeposition on copper cathode by constant and square-wave pulsating overpotential from Sn(II) alkaline solution. Hydrometallurgy 1989; 23:127–37

    Article  CAS  ISI  Google Scholar 

  75. Popov K.I., Maksimović M.D., Trnjančev J.D., Pavlović M.G. Dendritic electrocrystallization and the mechanism of powder formation in the potentiostatic electrodeposition of metals. J. Appl. Electrochem. 1981; 11:239–46

    Article  CAS  Google Scholar 

  76. Popov K.I., Radmilović V., Grgur B.N, Pavlović M.G. The morphology of copper electrodeposits. III..The disperse deposits formation, J. Serb. Chem. Soc., 1994; 59: 119–25

    CAS  Google Scholar 

  77. Calusaru, Aurelian, Electrodepositon of Metal Powders. Material Science Monography Vol. III. Amsterdam: Elsevier, 1979.

    Google Scholar 

  78. Popov, Konstantin; Pavlović Miomir. “Electrodeposition of Metal Powders with Controlled Grain Size and Morphology.” In Modern Aspects of Electrochemistry, Vol. 24, Ralph E. White, John O’M. Bockris, Brian E. Conway, eds. New York, NY: Plenum Press, 1993.

    Google Scholar 

  79. Pangarov N.A. Twining processes in the electrocrystallization of face-centred cubic metals. Phys. Stat. Sol. 1967; 20:371–77

    CAS  Google Scholar 

  80. Ibl, Norbert. “The Formation of Powdered Metal Deposits”. In Advances in Electrochemistry and Electrochemical Engineering, Vol. II, Paul Delahay, Charles W. Tobias, eds. New York, NY: Intersience, 1962.

    Google Scholar 

  81. Popov K.I., Pavlović M.G., Maksimović M.D. Electrodeposition of copper powders. The 10 th Meeting of Mines and Metallurgist, University of Belgrade, Bor, 1978.

    Google Scholar 

  82. Pavlović M.G., Popov K.I. Electrodeposition of mettal powders with controlled particle size and morphology. Proceedings of 43rd Meeting of ISE; 1992; Kordova.

    Google Scholar 

  83. Popov K.I., Pavlović M.G., Maksimović M.D. Comparison of critical conditions for initiation of dendritic growth and powder formation in potentiostatic and galvanostatic copper electrodeposition. J. Appl. Electrochem. 1982; 12:525–31

    Article  CAS  Google Scholar 

  84. Pavlović M.G., Kindlova Š., Roušar I. The initiation of dendritic growth of electrodeposited copper on rotating disc electrode with changing copper concentration and diffusion layer thickness. Electrochim. Acta 1992; 37:23–27

    Google Scholar 

  85. Pavlović M.G., Maksimović M.D., Popov K.I. The effect of cathode material and electrolysis duration on the powder morphology and particle grain size in potentiostatic copper powder electrodeposition (in Serbian). Hem. Ind. 1978; 32:15–21

    Google Scholar 

  86. Popov K.I., Pavlović M.G., Maksimović M.D., Krstajić S.S. The comparison of galvanostatic and potentiostatic copper powder deposition on platinum and aluminum electrodes. J. Appl. Electrochem. 1978; 8:503–14

    CAS  Google Scholar 

  87. Bockris J. O’M., Nagy Z., Dražić D. On the morphology of zinc electrodeposited from alkaline solutions. J. Electrochem. Soc. 1973; 120:30–41

    CAS  Google Scholar 

  88. Jovićević J.N., Despić A.R., Dražić D.M. Studies of the deposition of cadmium on foreign substrates. Electrochim. Acta 1977; 22:577–87

    Google Scholar 

  89. Despić A.R., Dražić M.D., Mirjanić M.D. Granular growth of electrochemically deposited metals. araday Discussion of the Chemical Society, 1978; 12:126–35

    Google Scholar 

  90. Popov K.I., Čekerevac M.I., Nikolić Lj.N. The dendritic electrocrystallization of cadmium from acid sulphate solutions I: Granular cadmium substrate. Surf. Coat. Technol. 1988; 34:219–29

    CAS  Google Scholar 

  91. Sluyters-Rehbach M., Wijenberg J.H.O.J, Bosco E., Sluyters J.H. The theory of chronoamperometry for the investigation of electrocrystallization. Mathematical description and analysis in the case of diffusion-controlled growth. J. Electroanal. Chem. 1987; 236:1–20

    Article  CAS  Google Scholar 

  92. Price P.B., Vermilyea D.A., Webb M.B., The growth and properties of electrolytic whiskers. Acta Mat. 1958; 6:524–31

    CAS  Google Scholar 

  93. Graf L., Weser W. The appearance of whiskers during electrocrystalization of silver (in German). Electrochim. Acta 1960; 2:145–64

    Article  CAS  Google Scholar 

  94. Gorbunova K.M., Zhukova A.J. Crystallochemical and diffusion mechanism of electrocrystallization (in Russian). Zh. Fiz. Khim. 1949; 23:605–15

    CAS  Google Scholar 

  95. Gorbunova K.M., Pankov P.D. Regularities in the crystallization of thin silver filaments (in Russian). Zh. Fiz. Khim. 1949; 23:616–24

    CAS  Google Scholar 

Download references

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Kluwer Academic Publishers

About this chapter

Cite this chapter

(2002). Surface Morphology of Metal Electrodeposits. In: Fundamental Aspects of Electrometallurgy. Springer, Boston, MA. https://doi.org/10.1007/0-306-47564-2_3

Download citation

  • DOI: https://doi.org/10.1007/0-306-47564-2_3

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-306-47269-5

  • Online ISBN: 978-0-306-47564-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics