Cooperative Control of Robot Formations

  • Rafael Fierro
  • Peng Song
  • Aveek Das
  • Vijay Kumar
Part of the Applied Optimization book series (APOP, volume 66)

Abstract

We describe a framework for controlling and coordinating a group of nonholonomic mobile robots equipped with range sensors, with applications ranging from scouting and reconnaissance, to search and rescue and manipulation tasks. We derive control algorithms that allow the robots to control their position and orientation with respect to neighboring robots or obstacles in the environment. We then outline a coordination protocol that automatically switches between the control laws to maintain a specified formation. Two simple trajectory generators are derived from potential field theory. The first allows each robot to plan its reference trajectory based on the information available to it. The second scheme requires sharing of information and enables a rigid group formation. Numerical simulations illustrate the application of these ideas and demonstrate the scalability of the proposed framework for a large group of robots.

Keywords

formation control potential functions nonholonomic mobile robots switching control 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Alur, R., Das, A., Esposito, J., Fierro, R., Hur, Y., Grudic, G., Kumar, V., Lee, I., Ostrowski, J. P., Pappas, G., Southall, J., Spletzer, J., and Taylor, C. J. (2000). A framework and architecture for multirobot coordination. In Proc. ISEROO, Seventh International Symposium on Experimental Robotics, Honolulu, Hawaii.Google Scholar
  2. [2]
    Barraquand, J., Langlois, B., and Latombe, J. (1992). Numerical potential field techniques for robot path planning. IEEE Trans. Syst., Man, and Cyber., 22(2):224–241.MathSciNetGoogle Scholar
  3. [3]
    Barraquand, J. and Latombe, J. (1993). Non-holonomic multibody mobile robots: controllability and motion planning in the presence of obstacles. Algorithmica, 10:121–155.CrossRefMathSciNetMATHGoogle Scholar
  4. [4]
    Beard, R. W., Lawton, J., and Hadaegh, F. Y. (1999). A coordination architecture for spacecraft formation control. Submitted to IEEE Trans. Contr. Sys. Technology.Google Scholar
  5. [5]
    Bemporad, A., De Luca, A., and Oriolo, G. (1996). Local incremental planning for a car-like robot navigating among obstacles. In Proc. IEEE Int. Conf. Robot. Automat., pages 1205–1211.Google Scholar
  6. [6]
    Canudas-de-Wit, C. and NDoudi-Likoho, A. D. (2000). Nonlinear control for a convoy-like vehicle. Automatica, 36:457–462.MathSciNetCrossRefMATHGoogle Scholar
  7. [7]
    Das, A., Fierro, R., Kumar, V., Southall, J., Spletzer, J., and Taylor, C. J. (2001). Real-time vision based control of a nonholonomic mobile robot. To appear in IEEE Int. Conf. Robot. Automat., ICRA01.Google Scholar
  8. [8]
    De Luca, A., Oriolo, G., and Samson, C. (1998). Feedback control of a nonholonomic car-like robot. In Laumond, J.-P., editor, Robot Motion Planning and Control, pages 171–253. Springer-Verlag, London.Google Scholar
  9. [9]
    Desai, J., Ostrowski, J. P., and Kumar, V. (1998). Controlling formations of multiple mobile robots. In Proc. IEEE Int. Conf. Robot. Automat., pages 2864–2869, Leuven, Belgium.Google Scholar
  10. [10]
    Fierro, R. and Lewis, F. L. (1999). Robot kinematics. In Webster, J., editor, Wiley Encyclopedia of Electrical and Electronics Engineering. John Wiley and Sons, Inc.Google Scholar
  11. [11]
    Fierro, R., Song, P., Das, A., and Kumar, V. (2001). A framework for scalable cooperative navigation of autonomous vehicles. Technical report MS-CIS-01-09, Department of Computer and Information Science, University of Pennsylvania, Philadelphia PA, USA.Google Scholar
  12. [12]
    Isidori, A. (1995). Nonlinear Control Systems. Springer-Verlag, London, 3rd edition.MATHGoogle Scholar
  13. [13]
    Khalil, H. (1996). Nonlinear Systems. Prentice Hall, Upper Sadle River, NJ, 2nd edition.Google Scholar
  14. [14]
    Khatib, O. (1986). Real-time obstacle avoidance for manipulators and mobile robots. International Journal of Robotics Research, 5:90–98.Google Scholar
  15. [15]
    Koditschek, D. (1987). Exact robot navigation by means of potential functions: Some topological considerations. In Proc. IEEE Int. Conf. Robot. Automat., pages 1–6.Google Scholar
  16. [16]
    Kraus, P. R. and Kumar, V. (1997). Compliant contact models for rigid body collisions. In Proceedings of IEEE International Conference on Robotics and Automation, pages 1382–1387.Google Scholar
  17. [17]
    Liberzon, D. and Morse, A. S. (1999). Basic problems in stability and design of switched systems. IEEE Control Systems, 19(5):59–70.CrossRefGoogle Scholar
  18. [18]
    Nemhauser, G. L. and Wolsely, L. A. (1988). Integer and Combinatorial Optimization, chapter I.3. Wiley.Google Scholar
  19. [19]
    Parker, L. E. (2000). Current state of the art in distributed autonomous mobile robotics. In Parker, L. E., Bekey, G., and Barhen, J., editors, Distributed Autonomous Robotic Systems, volume 4, pages 3–12. Springer, Tokio.Google Scholar
  20. [20]
    Rimon, E. and Koditschek, D. (1992). Exact robot navigation using artificial potential fields. IEEE Trans. Robot. & Autom., 8(5):501–518.Google Scholar
  21. [21]
    Song, P., Kraus, P., Kumar, V., and Dupont, P. (2001). Analysis of rigid-body dynamic models for simulation of systems with frictional contacts. Tran. ASME, 68:118–128.MATHGoogle Scholar
  22. [22]
    Spletzer, J., Das, A., Fierro, R., Taylor, C. J., Kumar, V., and Ostrowski, J. P. (2001). Cooperative localization and control for multi-robot manipulation. Submitted to IEEE/RSJ Int. Conf. Intell. Robots and Syst., IROS2001.Google Scholar
  23. [23]
    Volpe, R. and Khosla, P. (1990). Manipulator control with superquadric artificial potential functions: Theory and experiments. IEEE Trans. on Syst., Man, and Cyber., 20(6):1423–1436.Google Scholar

Copyright information

© Kluwer Academic Publishers 2002

Authors and Affiliations

  • Rafael Fierro
    • 1
  • Peng Song
    • 1
  • Aveek Das
    • 1
  • Vijay Kumar
    • 1
  1. 1.GRASP Lab.University of PennsylvaniaPhiladelphiaUSA

Personalised recommendations