Skip to main content

Microbial Secondary Production from Salt Marsh-Grass Shoots, and Its Known and Potential Fates

  • Chapter
Book cover Concepts and Controversies in Tidal Marsh Ecology

Abstract

Several lines of evidence (direct microscopy, index biochemicals) point to predominance of eukaryotic decomposers in natural decay of dead shoots of smooth cordgrass (Spartina alterniflora). Recent research shows that this is also true for black needlerush (Juncus roemerianus). Ascomycetous fungi are the major initial secondary producers based on the dead shoots. There is no overlap between the species of the cordgrass (e.g., Phaeosphaeria spartinicola) and needlerush (e.g., Loratospora aestuarii) fungal-decay communities. Even when conditions in the marsh are manipulated in directions that would be expected to favor prokaryotes (extra water and nitrogen), the ascomycetes accumulate maximum organic masses in standing-decaying shoots hundreds of times larger than prokaryotic masses. Rates of fungal production are not increased by raising duration of high water availability, probably due to fine-tuned fungal adaptation to periodic dryness, but nitrogen does limit fungal productivity in decaying cordgrass. Content of living-fungal mass can be 10 to 20% of totalsystem (= microbes + remaining plant) mass, depending on nitrogen availability, rates of invertebrate mycophagy, and probably several further factors yet to be determined. Standing crops of living fungi in cordgrass marshes in Georgia (per-m2) basis) have been calculated to be equal to 3% (summer) to 28% (winter) of living-cordgrass standing crop. This is calculated to be about 50 to 100% of total (non-cyano) bacterial crop; the great bulk of bacterial crop is sedimentary. Fungal productivity per m2 standing-decaying-cordgrass marsh has been provisionally found to be 10 times greater in winter than in summer (3652 mg per m2 per day; μ=0.07 day−1). Total bacterial productivity per m2 was calculated to be about x2 fungal in summer, and x0.07 fungal in winter. High yields of fungi (on the order of 50%) from cordgrass shoots may be part of the explanation for high rates of animal secondary production in saltmarsh ecosystems. Cordgrass-fungal standing crops and productivities (per unit leaf mass) do not show pronounced variation (in autumn) along a south-north latitudinal gradient from 30° to 44°N. One major known fate of saltmarsh-fungal secondary production is output to shredder gastropods (periwinkles, Littoraria irrorata). Other potential substantial fluxes are to amphipods (especially Uhlorchestia spartinophila) and other gastropods (especially Melampus bidentatus), and fluxes as sexual propagules (ascospores) and as remnant hyphal wall/sheath mass in fallen, decayed fragments. Key opportunities for saltmarsh-ecological research lie: in learning the details of the life histories of the more important saltmarsh-fungal producers; in determining the biotic and abiotic controls on saltmarsh-fungal productivity; and in investigations of impacts of fungal activities, such as the probable role that saltmarsh ascomycetes have in release of dimethylsulfide to the atmosphere.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature Cited

  • Alexopoulos, C. J., C. W. Mims and M. Blackwell. 1996. Introductory mycology. Wiley, New York, New York, USA.

    Google Scholar 

  • Anderson, C. E. 1974. A review of structure in several North Carolina saltmarsh plants. Pages 307–344 in R. J. Reimold and W. H. Queen, editors. Ecology of halophytes. Academic Press, New York, New York, USA.

    Google Scholar 

  • Armstrong, J., W. Armstrong, P. M. Beckett, J. E. Halder, S. Lythe, R. Holt and A. Sinclair. 1996. Pathways of aeration and the mechanisms and beneficial effects of humidity-and Venturi-induced convections in Phragmites australis (Cav.) Trin. ex Steud. Aquatic Botany 54:177–197.

    Google Scholar 

  • Arenovski, A. L. and B. L. Howes. 1992. Lacunal allocation and gas transport capacity in the saltmarsh grass Spartina alterniflora. Oecologia 90:316–322.

    Article  Google Scholar 

  • Aynsley, M., A. C. Ward and A. R. Wright. 1990. A mathematical model for the growth of mycelial fungi in submerged culture. Biotechnology and Bioengineering 35:820–830.

    Article  CAS  PubMed  Google Scholar 

  • Bacic, M. K., S. Y. Newell and D. C. Yoch. 1998. Release of dimethylsulfide from dimethylsulfoniopropionate (DMSP) by plant-associated saltmarsh fungi. Applied and Environmental Microbiology, 64:1484–1489.

    PubMed  CAS  Google Scholar 

  • Bürlocher, F. and S. Y. Newell. 1994a. Growth of the saltmarsh periwinkle Littoraria irrorata on fungal and cordgrass diets. Marine Biology 118:109–114.

    Google Scholar 

  • -1994b. Phenolics and proteins affecting palatability of Spartina leaves to the gastropod Littoraria irrorata. PSZNI Marine Ecology 15:65–75.

    Google Scholar 

  • Barrasa, J. M., A. Gutierrez, V. Escaso, F. Guillén, M. J. Martínez and A. T. Martínez. 1998. Electron and fluorescence microscopy of extracellular glucan and aryl-alcohol oxidase during wheat-straw degradation by Pleurotus eryngii. Applied and Environmental Microbiology 64:325–332.

    PubMed  CAS  Google Scholar 

  • Bartolomé, B., C. B. Faulds, P. A. Kroon, K. Waldron, H. J. Gilbert, G. Hazlewood and G. Williamson. 1997. An Aspergillus niger esterase (ferulic acid esterase III) and a recombinant Pseudomonas fluorescens subsp. cellulosa esterase (XylD) release a 5-5’ ferulic dehydrodimer (diferulic acid) from barley and wheat cells. Applied and Environmental Microbiology 63:208–212.

    PubMed  Google Scholar 

  • Bebout, B. M. 1988. The role of marine fungi in the food selection and nutrition of the saltmarsh periwinkle Littorina irrorata Say (Gastropoda). MS Thesis, University of North Carolina, Chapel Hill, North Carolina, USA.

    Google Scholar 

  • Bedrock, C. N., M. V. Cheshire, B. L. Williams, I. Solntseva, S. J. Chapman, J. A. Chudek and B. A. Goodman. 1998. Identification of nitrogenous components of fungal and bacterial origin immobilized in decomposing wheat straw by NMR spectroscopy using 15N CPMAS. Soil Biology and Biochemistry 30:113–115.

    Article  CAS  Google Scholar 

  • Benner, R., J. Lay, E. K’nees and R. E. Hodson. 1988. Carbon conversion efficiency for bacterial growth on lignocellulose: implications for detritus-based food webs. Limnology and Oceanography 33:1514–1526.

    Article  CAS  Google Scholar 

  • Benner, R., M. L. Fogel and E. K. Sprague. 1991. Diagenesis of belowground biomassof Spartina alterniflora in saltmarsh sediments. Limnology and Oceanography 36:1358–1374.

    CAS  Google Scholar 

  • Blum, L. K. 1993. Spartina alterniflora root dynamics in a Virginia marsh. Marine Ecology Progress Series 102:169–178.

    Google Scholar 

  • Boddy, L. and S. C. Watkinson. 1995. Wood decomposition, higher fungi and their role in nutrient redistribution. Canadian Journal of Botany 73:S1377–S1383.

    Google Scholar 

  • Boyd, P. E. 1980. Ecology of three arenicolous marine fungi. I. Their role in the diet of the beachhopper Orchestia grillus. II. The influence of temperature on the seasonal and geographic distribution of Asteromyces cruciatus, Sigmoidea marina and Varicosporina ramulosa. MS Thesis, University of North Carolina, Chapel Hill, North Carolina, USA.

    Google Scholar 

  • Brendelberger, H. 1997. Determination of digestive enzyme kinetics: a new method to define trophic niches in freshwater snails. Oecologia 109:34–40.

    Article  Google Scholar 

  • Cammen, L. M. 1991. Annual bacterial production in relation to benthic microalgal production and sediment oxygen uptake in an intertidal sandflat and an intertidal mudflat. Marine Ecology Progress Series 71:13–25.

    Google Scholar 

  • Cantrell, S. A., S. Y. Newell and R. T. Hanlin. 1996. A new species of Lachnum on Spartina alterniflora. Mycotaxon 57:479–485.

    Google Scholar 

  • Chalmers, A. G. 1997. The ecology of the Sapelo Island National Estuarine Research Reserve. Sanctuaries and Reserves Division, Office of Coastal Resource Management, National Oceanic & Atmospheric Administration, Washington, District of Columbia, USA.

    Google Scholar 

  • Chapman, S. J. and T. R. G. Gray. 1986. Importance of cryptic growth, yield factors and maintenance energy in models of microbial growth in soil. Soil Biology and Biochemistry 18:1–4.

    Article  Google Scholar 

  • Chen, F., J. M. González, W. A. Dustman, M. A. Moran and R. E. Hodson. 1997. In situ reverse transcription, an approach to characterize genetic diversity and activities of prokaryotes. Applied and Environmental Microbiology 63:4907–4913.

    CAS  PubMed  Google Scholar 

  • Chin-Leo, G. 1997. Bacterial secondary productivity. Pages 263–271 in M. McInerney, L. Stetzenbach, C.J. Hurst, G. Knudsen and M. Walter, editors. Manual of environmental microbiology. ASM Press, Washington, District of Columbia.

    Google Scholar 

  • Christian, R. R., W. L. Bryant and M. M. Brinson. 1990. Juncus roemerianus production and decomposition alonggradients of salinity and hydroperiod. Marine Ecology Progress Series 68:137–145.

    Google Scholar 

  • Coffin, R. B., B. Fry, B. J. Peterson and R. T. Wright. 1989. Carbon isotope composition of estuarine bacteria. Limnology and Oceanography 34:1305–1310.

    CAS  Google Scholar 

  • Covi, M. P. and R. T. Kneib. 1995. Intertidal distribution, population dynamics and production of the amphipod Uhlorchestia spartinophila in a Georgia, USA, saltmarsh. Marine Biology 121:447–455.

    Article  Google Scholar 

  • Dai, T. and R. G. Wiegert. 1996. Ramet population dynamics and net aerial primary productivity of Spartina alterniflora. Ecology 77:276–288.

    Google Scholar 

  • Daiber, F. C. 1982. Animals of the tidal marsh. Van Nostrand Reinhold, New York, New York, USA.

    Google Scholar 

  • Devereux, R., M. E. Hines and D. A. Stahl. 1996. S cycling: characterization of natural communities of sulfate-reducing bacteria by 16S rRNA sequence comparisons. Microbial Ecology 32:283–292.

    Article  PubMed  CAS  Google Scholar 

  • Dewey, F. M. 1996. Production and use of monoclonal antibodies for the detection of fungi. British Crop Protection Council Monograph 65:85–91.

    CAS  Google Scholar 

  • Dick, M. W. 1997. Fungi, flagella and phylogeny. Mycological Research 101:385–394.

    Google Scholar 

  • Doelle, H. W., D. A. Mitchell and C. E. Rolz, editors. 1992. Solid substrate cultivation. Elsevier Applied Science, New York, New York, USA.

    Google Scholar 

  • Edwards, S. G., A. H. Fitter and J. P. W. Young. 1997. Quantification of an arbuscular mycorrhizal fungus, Glomus mosseae, within plant roots by competitive polymerase chain reaction. Mycological Research 101:1440–1444.

    Article  Google Scholar 

  • Fallon, R. D., S. Y. Newell and C. S. Hopkinson. 1983. Bacterial production in marine sediments: will cell-specific measures agree with whole-system metabolism? Marine Ecology Progress Series 11:119–127.

    Google Scholar 

  • Fell, J. W. and I. M. Master. 1975. Phycomycetes (Phytophthora spp. nov. and Pythium sp. nov.) associated with degrading mangrove (Rhizophora mangle) leaves. Canadian Journal of Botany 53:2908–2922.

    Google Scholar 

  • Fell, J. W. and S. Y. Newell. 1998. Biochemical and molecular methods for the study of marine fungi. Pages 259–283 in K. Cooksey, editor. Molecular approaches to the study of the ocean. Chapman & Hall, London, England.

    Google Scholar 

  • Fell, P. E., N. C. Olmstead, E. Carlson, W. Jacob, D. Hitchcock and G. Silber. 1982. Distribution and abundance of macroinvertebrates on certain Connecticut tidal marshes, with emphasis on dominant molluscs. Estuaries 5:234–239.

    Google Scholar 

  • Frankland, J. C. 1998. Fungal succession-unravelling the unpredictable. Mycological Research 102:1–15.

    Article  Google Scholar 

  • French, N. R. 1979. Perspectives in grassland ecology. Springer-Verlag, New York.

    Google Scholar 

  • Fuhrman, J. A. 1992. Bacterioplankton roles in cycling of organic matter: the microbial food web. Pages 361–383 in P. G. Falkowski and A. D. Woodhead, editors. Primary productivity and biogeochemical cycles in the sea. Plenum Press, New York, New York, USA.

    Google Scholar 

  • Fuhrman, J. A., S. H. Lee, Y. Masuchi, A. A. Davis and R. M. Wilcox. 1994. Characterization of marine prokaryotic communities via DNA and RNA. Microbial Ecology 28:133–145.

    Article  CAS  Google Scholar 

  • Gessner, M. O. and E. Chauvet. 1997. Growth and production of aquatic hyphomycetes in decomposing leaf litter. Limnology and Oceanography 42:496–505.

    CAS  Google Scholar 

  • Gessner, M. O. and S. Y. Newell. 1997. Bulk quantitative methods for the examination of eukaryotic organoosmotrophs in plant litter. Pages 295–308 in M. McInerney, L. Stetzenbach, C.J. Hurst, G. Knudsen and M. Walter, editors. Manual of environmental microbiology. ASM Press, Washington, District of Columbia, USA.

    Google Scholar 

  • Gessner, R. V. 1977. Seasonal occurrence and distribution of fungi associated with Spartina alterniflora from a Rhode Island estuary. Mycologia 69:477–491.

    Google Scholar 

  • Gessner, R. V. and J. Kohlmeyer. 1976. Geographical distribution and taxonomy of fungi from saltmarsh Spartina. Canadian Journal of Botany 54:2023–2037.

    Google Scholar 

  • González, J. M., F. Mayer, M. A. Moran, R. E. Hodson and W. B. Whitman. 1997. Sagittula stellata gen. nov., sp. nov., a lignin-transforming bacterium from a coastal environment. International Journal of Systematic Bacteriology 47:773–780.

    PubMed  Google Scholar 

  • González, J. M. and M. A. Moran. 1997. Numerical dominance of a group of marine bacteria in the α-subclass of the class Proteobacteria in coastal seawater. Applied and Environmental Microbiology 63:4237–4242.

    PubMed  Google Scholar 

  • González, J. M., W. B. Whitman, R. E. Hodson and M. A. Moran. 1996. Identifying numerically abundant culturable bacteria from complex communities: an example from a lignin enrichment culture. Applied and Environmental Microbiology 62:4433–4440.

    PubMed  Google Scholar 

  • Gutiérrez, A., M. J. Martínez, G. Almendros, A. Prieto, F. J. Gonzalez-Vila and A. T. Martínez. 1995. Hyphal-sheath polysaccharides in fungal deterioration. Science of the Total Environment 167:315–328.

    Google Scholar 

  • Hausman, S. A. 1932. A contribution to the ecology of the saltmarsh snail. Melampus bidentatus Say. The Nautilus 66:541–545.

    Google Scholar 

  • Hawksworth, D. L., P. M. Kirk, B. C. Sutton and D. N. Pegler. 1995. Ainsworth and Bisby’ s Dictionary of the Fungi. Eighth edition. CAB International, Wallingford, UK.

    Google Scholar 

  • Healy, B. and K. Walters. 1994. Oligochaeta in Spartina stems: the microdistribution of Enchytraeidae and Tubificidae in a saltmarsh, Sapelo Island, USA. Hydrobiologia 278:111–123.

    Article  Google Scholar 

  • Heard, R. W. 1982. Guide to common tidal marsh invertebrates of the northeastern Gulf of Mexico. Mississippi/Alabama Sea Grant Consortium, Mobile, Alabama, USA.

    Google Scholar 

  • Heller, J. and A. Abotbol. 1997. Litter shredding in a desert oasis by the snail Melanopsis praemorsa. Hydrobiologia 344:65–73.

    Article  Google Scholar 

  • Hill, N. M. and D. G. Patriquin. 1992. Interactions between fungi and nitrogen-fixing bacteria during decomposition. Pages 783–796 in G. C. Carroll and D. T. Wicklow, editors. The fungal community. Second edition. Marcel-Dekker, New York, New York, USA.

    Google Scholar 

  • Hodson, R. E., R. R. Christian and A. E. Maccubbin. 1984. Lignocellulose and lignin in the saltmarsh grass Spartina alterniflora: initial concentrations and short-term, post-depositional changes in detrital matter. Marine Biology 81:1–7.

    Article  CAS  Google Scholar 

  • Honegger, R. 1991. Functional aspects of the lichen symbiosis. Annual Review of Plant Physiology 42:553–578.

    CAS  Google Scholar 

  • Hullar, M. A. J., B. Fry, B. J. Peterson and R. T. Wright. 1996. Microbial utilization of estuarine dissolved organic carbon: a stable isotope tracer approach tested by mass balance. Applied and Environmental Microbiology 62:2489–2493.

    CAS  PubMed  Google Scholar 

  • Hurek, T., B. Wagner and B. Reinhold-Hurek. 1997. Identification of N2-fixing plant-and fungusassociated Azoarcus species by PCR-based genomic fingerprints. Applied and Environmental Microbiology 63:4331–4339.

    PubMed  CAS  Google Scholar 

  • Hutchison, L. J. and G. L. Barron. 1997. Parasitism of algae by lignicolous Basidiomycota and other fungi. Canadian Journal of Botany 75:1006–1011.

    Google Scholar 

  • Joergensen, R. G., B. Meyer, A. Roden and B. Wittke. 1996. Microbial activity and biomass in mixture treatments of soil and biogenic municipal refuse compost. Biology and Fertility of Soils 23:43–49.

    Google Scholar 

  • Kemp, P. F., S. Y. Newell and C. Krambeck. 1990. Effects of filter-feeding by the ribbed mussel Geukensia demissa on the water-column microbiota of a Spartina alterniflora saltmarsh. Marine Ecology Progress Series 59:119–131.

    Google Scholar 

  • Kendrick, B. 1992. The fifth kingdom. Second edition. Focus Information Group, Newburyport, Massachusetts, USA.

    Google Scholar 

  • Kerley, S. J. and D. J. Read. 1997. The biology of mycorrhiza in the Ericaceae. XIX. Fungal mycelium as a nitrogen source for the ericoid mycorrhizal fungus Hymenoscyphus ericae and its host plants. New Phytologist 136:691–701.

    Article  Google Scholar 

  • Kirchman, D. L., B. J. Peterson and D. Juers. 1984. Bacterial growth and tidal variation in bacterial abundance in Great Sippewissett salt marsh. Marine Ecology Progress Series 19:247–259.

    Google Scholar 

  • Kneib, R. T. 1997. The role of tidal marshes in the ecology of estuarine nekton. Oceanography and Marine Biology, Annual Review 35:163–220.

    Google Scholar 

  • Kneib, R. T., S. Y. Newell and E. T. Hermeno. 1997. Survival, growth and reproduction of the saltmarsh amphipod Uhlorchestia spartinophila reared on natural diets of senescent and dead Spartina alterniflora leaves. Marine Biology 128:423–431.

    Article  Google Scholar 

  • Kohlmeyer, J. and R. V. Gessner. 1976. Buergenerula spartinae sp. nov., an Ascomycete from salt marsh cordgrass, Spartina alterniflora. Canadian Journal of Botany 54:1759–1766.

    Article  Google Scholar 

  • Kohlmeyer, J. and E. Kohlmeyer. 1979. Marine mycology. The higher fungi. Academic Press, New York, New York, USA.

    Google Scholar 

  • Kohlmeyer, J. and B. Volkmann-Kohlmeyer. 1991. Illustrated key to the filamentous higher marine fungi. Botanica Marina 34:1–61.

    Article  Google Scholar 

  • Kohlmeyer, J., B. Volkmann-Kohlmeyer and O. E. Eriksson. 1997. Fungi on Juncus roemerianus 9. New obligate and facultative marine Ascomycotina. Botanica Marina 40:291–300.

    Google Scholar 

  • Kuehn, K. A. and K. Suberkropp. 1998. Diel fluctuations in rates of CO2 evolution from standing dead leaf litter of the emergent macrophyte Juncus effusus L. Aquatic Microbial Ecology 14:171–182.

    Google Scholar 

  • Kuehn, K. A., P. F. Churchill and K. S uberkropp. 1998. Osmoregulatory responses of fungi inhabiting standing-dead litter of the freshwater emergent macrophyte Juncus effusus. Applied and Environmental Microbiology 64:607–612.

    PubMed  CAS  Google Scholar 

  • Lana, P. C. and C. Guiss. 1992. Macrofauna-plant-biomass interactions in a euhaline saltmarsh in Paranaguá Bay (SE Brazil). Marine Ecology Progress Series 80:57–64.

    Google Scholar 

  • Le Gall, S., M. Bel Hassen and P. Le Gall. 1997. Ingestion of a bacterivorous ciliate by the oyster Crassostrea gigas: protozoa as a trophic link between picoplankton and benthic suspension feeders. Marine Ecology Progress Series 152:301–306.

    Google Scholar 

  • Leuchtmann, A. and S. Y. Newell. 1991. Phaeosphaeria spartinicola, a new species on Spartina. Mycotaxon 41:1–7.

    Google Scholar 

  • Levinton, J. S. and S. Stewart. 1988. Effects of sediment organics, detrital input and temperature on demography, production and body size of a deposit feeder. Marine Ecology Progress Series 49:259–266.

    Google Scholar 

  • Mackay, W. P., S. J. Loring, J. C. Zak, S. I. Silva, F. M. Fisher and W. G. Whitford. 1994. Factors affecting loss in mass of creosotebush leaf-litter on the soil surface in the northern Chihuahuan Desert. Southwestern Naturalist 39:78–82.

    Google Scholar 

  • Mahuku, G. S., P. H. Goodwin and R. Hall. 1995. A competitive polymerase chain reaction to quantify DNA of Leptosphaeria maculans during blackleg development in oilseed rape. Molecular Plant-Microbe Interactions 8:761–767.

    PubMed  CAS  Google Scholar 

  • McGonigle, T. P. 1997. Fungivores. Pages 237–248. in D. T. Wicklow and B. Söderström, editors. The Mycota. Volume IV. Environmental and microbial relationships. Springer-Verlag, New York, New York, USA.

    Google Scholar 

  • McQuaid, C. D. 1996. Biology of the gastropod family Littorinidae. II. Role in the ecology of intertidal and shallow marine ecosystems. Oceanography and Marine Biology, Annual Review 34:263–302.

    Google Scholar 

  • Montagna, P. A. 1995. Rates of metazoan meiofaunal microbivory: a review. Vie et Milieu 45:1–9.

    Google Scholar 

  • Montague, C. L. and R. G. Wiegert. 1990. Salt marshes. Pages 481–516 in R. L. Myers and J. J. Ewel, editors. Ecosystems of Florida. University of Central Florida Press, Orlando, Florida, USA.

    Google Scholar 

  • Mook, D. 1986. Absorption efficiencies of the intertidal mangrove dwelling mollusk Melampus coffeus Linné and the rocky intertidal mollusk Acanthopleura granulata Gmelin. PSZNI Marine Ecology 7:105–113.

    CAS  Google Scholar 

  • Moran, M. A. and R. E. Hodson. 1990. Contributions of degrading Spartina alterniflora lignocellulose to the dissolved organic carbon pool of a saltmarsh. Marine Ecology Progress Series 62:161–168.

    CAS  Google Scholar 

  • Moran, M. A., L. T. Rutherford and R. E. Hodson. 1995. Evidence for indigenous Streptomyces populations in a marine environment determined with a 16S rRNA probe. Applied and Environmental Microbiology 61:3695–3700.

    PubMed  CAS  Google Scholar 

  • Morris, J. T. and G. J. Whiting. 1986. Emission of gaseous carbon dioxide from saltmarsh sediments and its relation to other carbon losses. Estuaries 9:9–19.

    CAS  Google Scholar 

  • Mouget, J. L., A. Dakhama, M. C. Lavoie and J. de la Noüe. 1995. Algal growth enhancement by bacteria: is consumption of photosynthetic oxygen involved? FEMS Microbiology Ecology 18:35–44.

    Article  CAS  Google Scholar 

  • Newell, S.Y. 1993. Decomposition of shoots of a saltmarsh grass; methodology and dynamics of microbial assemblages. Advances in Microbial Ecology 13:301–326.

    Google Scholar 

  • -1994. Ecomethodology for organoosmotrophs: prokaryotic unicellular versus eukaryotic mycelial. Microbial Ecology 28:151–157.

    Article  Google Scholar 

  • -1996a. Established and potential impacts of eukaryotic mycelial decomposers in marine/terrestrial ecotones. Journal of Experimental Marine Biology and Ecology 200:187–206.

    Article  Google Scholar 

  • -1996b. The [14C]acetate-to-ergosterol method: factors for conversion from acetate incorporated to organic fungal mass synthesized. Soil Biology and Biochemistry 28:681–683.

    Article  CAS  Google Scholar 

  • Newell, S. Y., R. D. Fallon, B. F. Sherr and E. B. Sherr. 1988a. Mesoscale temporal variation in bacterial standing crop, percent active cells, productivity and output in a saltmarsh tidal river. Verhandlung Internationale Verein Limnologie 23:1839–1845.

    Google Scholar 

  • Newell, S.Y. and J. W. Fell. 1992. Ergosterol content of living and submerged, decaying leaves and twigs of red mangrove. Canadian Journal of Microbiology 38:979–982.

    Article  CAS  Google Scholar 

  • Newell, S. Y. and F. Bärlocher. 1993. Removal of fungal and total organic matter from decaying cordgrass leaves by shredder snails. Journal of Experimental Marine Biology and Ecology 171:39–49.

    Google Scholar 

  • Newell, S. Y., C. S. Hopkinson and L. A. Scott. 1992. Patterns of nitrogenase activity (acetylene reduction) associated with standing, decaying shoots of Spartina alterniflora. Estuarine, Coastal and Shelf Science 35:127–140.

    CAS  Google Scholar 

  • Newell, S.Y. and C. Krambeck. 1995. Responses of bacterioplankton to tidal inundations of a saltmarsh in a flume and adjacent mussel enclosures. Journal of Experimental Marine Biology and Ecology 190:79–95.

    Article  Google Scholar 

  • Newell, S.Y. and L.A. Palm. 1998. Responses of bacterial assemblages on standing decaying blades of smooth cordgrass to additions of water and nitrogen. International Review of Hydrobiology 83:115–122.

    CAS  Google Scholar 

  • Newell, S. Y., T. L. Arsuffi and R. D. Fallon. 1988. Fundamental procedures for determining ergosterol content of decaying plant material by liquid chromatography. Applied and Environmental Microbiology 54:1876–1879.

    PubMed  CAS  Google Scholar 

  • Newell, S.Y., T.L. Arsuffi and L.A. Palm 1996b. Misting and nitrogen fertilization of shoots of a saltmarsh grass: effects upon fungal decay of leaf blades. Oecologia 108:495–502.

    Article  Google Scholar 

  • -1998. Seasonal and vertical demography of dead portions of shoots of smooth cordgrass in a south-temperate saltmarsh. Aquatic Botany 60:325–335.

    Article  Google Scholar 

  • Newell, S. Y., R. D. Fallon and J. D. Miller. 1989. Decomposition and microbial dynamics for standing, naturally positioned leaves of the saltmarsh grass Spartina alterniflora. Marine Biology 101:471–481.

    Article  Google Scholar 

  • Newell, S. Y., D. Porter and W. L. Lingle 1996a. Lignocellulolysis by ascomycetes (Fungi) of a saltmarsh grass (smooth cordgrass). Microscopy Research and Technique 33:32–46.

    Article  PubMed  CAS  Google Scholar 

  • Newell, S. Y. and J. Wasowski. 1995. Sexual productivity and spring intramarsh distribution of a key saltmarsh microbial secondary producer. Estuaries 18:241–249.

    Google Scholar 

  • Nicole, M., H. Chamberland, D. Rioux, X. Xixuan, R. A. Blanchette, J. P. Geiger and G. B. Ouellette. 1995. Wood degradation by Phellinus noxius: ultrastructure and cytochemistry. Canadian Journal of Microbiology 41:253–265.

    CAS  Google Scholar 

  • Nilsson, T., G. Daniel, T. K. Kirk and J. R. Obst. 1989. Chemistry and microscopy of wood decay by some higher ascomycetes. Holzforschung 43:11–18.

    Article  CAS  Google Scholar 

  • Paerl, H. W. and J. L. Pinckney. 1996. A mini-review of microbial consortia: their roles in aquatic production and biogeochemical cycling. Microbial Ecology 31:225–247.

    Article  PubMed  Google Scholar 

  • Pennings, S. C., T. H. Carefoot, E. L. Siska, M. E. Chase and T. A. Page. 1998. Feeding preferences of a generalist saltmarsh crab: relative importance of multiple plant traits. Ecology 79:1968–1979.

    Google Scholar 

  • Proffitt, C. E., K. M. Johns, C. B. Cochrane, D. J. Devlin, T. A. Reynolds, D. L. Payne, S. Jeppesen, D. W. Peel and D. D. Linden. 1995. Field and laboratory experiments of the consumption of mangrove leaf litter by the macrodetritivore Melampus coffeus L. (Gastropoda: Pulmonata). Florida Scientist 56:211–222.

    Google Scholar 

  • Rayner, A. D. M., G. S. Griffith and A. M. Ainsworth. 1995. Mycelial interconnectedness. Pages 21–40 in A. R. Gow and G. M. Gadd, editors. The growing fungus. Chapman & Hall, London, England.

    Google Scholar 

  • Rietsma, C. S., I. Valiela and R. Buchsbaum. 1988. Detrital chemistry, growth and food choice in the saltmarsh snail (Melampus bidentatus). Ecology 69:261–266.

    Google Scholar 

  • Rietsma, C. S., I. Valiela and A. Sylvester-Serianni. 1982. Food preferences of dominant saltmarsh herbivores and detritivores. PSZNI Marine Ecology 3:179–182.

    Google Scholar 

  • Robarts, R. D. and T. Zohary. 1993. Fact or fiction — bacterial growth rates and production as determined by [methyl-3H] thymidine? Advances in Microbial Ecology 13:371–425.

    CAS  Google Scholar 

  • Rublee, P. A. 1982. Seasonal distribution of bacteria in salt marsh sediments in North Carolina. Estuarine, Coastal and Shelf Science 15:67–74.

    Google Scholar 

  • Rutledge, P. A. and J. W. Fleeger. 1993. Abundance and seasonality of meiofauna, including harpacticoid copepod species, associated with stems of the saltmarsh cord grass, Spartina alterniflora. Estuaries 16:760–768.

    Google Scholar 

  • Samiaji, J. and F. Bärlocher. 1996. Geratology and decomposition of Spartina alterniflora Liosel in a New Brunswick saltmarsh. Journal of Experimental Marine Biology and Ecology 201:233–252.

    Article  Google Scholar 

  • Schut, F., R. A. Prins and J. C. Gottschal. 1997. Oligotrophy and pelagic marine bacteria: facts and fiction. Aquatic Microbial Ecology 12:177–202.

    Google Scholar 

  • Shia, F. K. and H. W. Ducklow. 1997. Bacterioplankton growth responses to temperature and chlorophyll variations in estuaries measured by thymidine: leucine incorporation ratio. Aquatic Microbial Ecology 13:151–159.

    Google Scholar 

  • Sinsabaugh, R.L. and S. Findlay. 1995. Microbial production, enzyme activity, and carbon turnover in surface sediments of the Hudson River estuary. Mircrobial Ecology 30:127–141.

    CAS  Google Scholar 

  • Slim, F. J., M. A. Hemminga, C. Ochieng, N. T. Jannink, E. Cocheret de la Morinière and G. van der Velde. 1997. Leaf litter removal by the snail Terebralia palustris (Linnaeus) and sesarmid crabs in an East African mangrove forest (Gazi Bay, Kenya). Journal of Experimental Marine Biology and Ecology 215:35–48.

    Article  Google Scholar 

  • Smalley, A. E. 1959. The role of two invertebrate populations, Littorina irrorata and Orchelimum fidicinium, in the energy flow of a saltmarsh ecosystem. University Microfilms (59–5687), Ann Arbor, MI, USA.

    Google Scholar 

  • Spelke, J. A., P. E. Fell and L. L. Helvenston. 1995. Population structure, growth and fecundity of Melampus bidentatus (Say) from two regions of a tidal marsh complex in Connecticut. The Nautilus 108:42–47.

    Google Scholar 

  • Suberkropp, K. 1992. Interactions with invertebrates. Pages 118–134 in F. Bärlocher, editor. The Ecology of aquatic hyphomycetes. Springer-Verlag, New York.

    Google Scholar 

  • -1997. Annual production of leaf-decaying fungi in a woodland stream. Freshwater Biology 38:169–178.

    Article  Google Scholar 

  • Svitil, A. L., S. M. Ní Chadhain, J. A. Moore and D. L. Kirchman. 1997. Chitin degradation proteins produced by the marine bacterium Vibrio harveyi growing on different forms of chitin. Applied and Environmental Microbiology 63:408–413.

    CAS  PubMed  Google Scholar 

  • Theenhaus, A. and S. Scheu. 1996. The influence of slug (Arion rufus) mucus and cast material addition on microbial biomass, respiration and nutrient cycling in beech leaf litter. Biology and Fertility of Soils 23:80–85.

    Google Scholar 

  • Thompson, L. S. 1984. Comparison of the diets of the tidal marsh snail, Melampus bidentatus and the amphipod, Orchestia grillus. The Nautilus 98:44–53.

    Google Scholar 

  • Torsvik, V., R. Sørheim and J. Goksøyr. 1996. Total bacterial diversity in soil and sediment communities: a review. Journal of Industrial Microbiology 17:170–178.

    CAS  Google Scholar 

  • Turner, R. E. 1993. Carbon, nitrogen and phosphorus leaching rates from Spartina alterniflora Loisel saltmarshes. Marine Ecology Progress Series 92:135–140.

    CAS  Google Scholar 

  • Wardle, D. A. and P. Lavelle. 1997. Linkages between soil biota, plant litter quality and decomposition. Pages 107–124 in G. Cadisch and K. E. Giller, editors. Driven by nature: plant litter quality and decomposition. CAB International, Wallingford, England.

    Google Scholar 

  • Wessels, J. G. H. 1997. Hydrophobins: proteins that change the nature of the fungal surface. Advances in Microbial Physiology 38:1–45.

    PubMed  CAS  Google Scholar 

  • White, D. S. and B. L. Howes. 1994. Nitrogen incorporation into decomposinglitter of Spartina alterniflora. Limnology and Oceanography 39:133–140.

    CAS  Google Scholar 

  • Zimmerman, K. and J. W. Mannhalter. 1996. Technical aspects of quantitative competitive PCR. BioTechniques 21:268–279.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Kluwer Academic Publishers

About this chapter

Cite this chapter

Newell, S.Y., Porter, D. (2002). Microbial Secondary Production from Salt Marsh-Grass Shoots, and Its Known and Potential Fates. In: Weinstein, M.P., Kreeger, D.A. (eds) Concepts and Controversies in Tidal Marsh Ecology. Springer, Dordrecht. https://doi.org/10.1007/0-306-47534-0_9

Download citation

  • DOI: https://doi.org/10.1007/0-306-47534-0_9

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-0-7923-6019-3

  • Online ISBN: 978-0-306-47534-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics