Skip to main content

Functional Equivalency of Restored and Natural Salt Marshes

  • Chapter

Abstract

Although achieving functional equivalency of restored and natural ecosystems is a desirable restoration goal, direct assessments of function are rare, as are data supporting the use of indicators of function. The issue is how structural attributes can be used to assess ecosystem functioning. A functional equivalency index mixed both structural and functional measures, and an often-cited model of ecosystem degradation and restoration depicted a straight-line relationship between the two variables. Several points need clarification, not only for tidal wetlands but for restoration ecology generally. It is unrealistic to expect linear relationships among structure, function, and time; it is also inappropriate to assume, for natural and restored ecosystems, that equivalent structure means equivalent function. For example, using plant biomass to compare primary productivity rates assumes equal biomass: productivity relationships among sites; restored and natural wetlands are less likely to be similar in grazing, decomposition, and export rates than are two natural sites. Likewise, using soil organic matter (OM) and total Kjeldahl nitrogen (TKN) to indicate nutrient availability may be less appropriate for restored and natural marsh comparisons than for two natural sites. We recommend that comparisons of structural attributes be labeled structural equivalency measures, thereby avoiding misconceptions. Useful structural measures for assessing tidal wetland restoration are: soil texture; soil OM, soil nutrients, vegetation structure (height distributions); invertebrate and fish populations (especially fish size distributions), and topographic complexity.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature Cited

  • Boyer, K. E. and J. B. Zedler. 1996. Damage to cordgrass by scale insects in a constructed salt marsh: effects of nitrogen additions. Estuaries 19:1–12.

    CAS  Google Scholar 

  • -1998. Effects of nitrogen additions on the vertical structure of a constructed cordgrass marsh. Ecological Applications 8:692–705.

    Google Scholar 

  • Bradshaw, A. D. 1984. Ecological principles and land reclamation practice. Landscape Planning 11:35–48.

    Google Scholar 

  • -1987. The reclamation of derelict land and the ecology of ecosystems. Pages 53–74 in W. R. Jordan, M.R. Gilpin and J. D. Aber, editors. Restoration ecology: a synthetic approach to ecological research. Cambridge University Press, Cambridge, England.

    Google Scholar 

  • -1995. Alternative end points for reclamation. Pages 165–186 in J. Cairns, editor. Rehabilitating damaged ecosystems. Second edition. Lewis Publishers, Boca Raton, Florida, USA.

    Google Scholar 

  • Chamberlain, R. H. and R. A. Barnhart. 1993. Early use by fish of a mitigation salt marsh, Humboldt Bay, California. Estuaries 16:769–783.

    Google Scholar 

  • Chapin, F. S., O. E. Sala, I. C. Burke, J. P. Grime, D. U. Hooper, W. K. Lauenroth, A. Lombard, H. A. Mooney, A. R. Mosier, S. Naeem, S. W. Pacala, J. Roy, W. L. Steffen and D. Tilman. 1998. Ecosystem consequences of changing biodiversity: experimental evidence and research agenda for the future. Bio Science 48:45–52.

    Google Scholar 

  • Craft, C. B., E. D. Seneca and S. W. Broome. 1991. Porewater chemistry of natural and created marsh soils. Journal of Experimental Marine Biology and Ecology 152:187–200.

    Article  CAS  Google Scholar 

  • Craft, C. B., S. W. Broome and E. D. Seneca. 1988. Nitrogen, phosphorus and organic carbon pools in natural and transplanted marsh soils. Estuaries 11:272–280.

    CAS  Google Scholar 

  • Deegan, L. A., J. T. Finn and J. Bounaccorsi. 1997. Development and validation of an estuarine biotic integrity index. Estuaries 20:601–617.

    Google Scholar 

  • Desmond, J., J. B. Zedler and G. D. Williams. 1999. Fish use of tidal creek habitats in two southern California salt marshes. Ecological Engineering 14:233–252.

    Google Scholar 

  • Dobson, A. P., A. D. Bradshaw and A. J. M. Baker. 1997. Hopes for the future: restoration ecology and conservation biology. Science 227:515–522.

    Google Scholar 

  • Fell, P. E., K. A. Murphy, M. A. Peck and M. L. Recchia. 1991. Re-establishment of Melampus bidentatus (Say) and other macroinvertebrates on a restored impounded tidal marsh: comparison of populations above and below the impoundment dike. Journal of Experimental Marine Biology and Ecology 152:33–48.

    Article  Google Scholar 

  • Frenkel, R. E. and J. C. Morlan. 1991. Can we restore our salt marshes? Lessons from the Salmon River, Oregon. The Northwest Environmental Journal 7:119–135.

    Google Scholar 

  • Gibson, K. D., J. B. Zedler and R. Langis. 1994. Limited response of Spartina foliosa to soil amendments in constructed salt marshes. Ecological Applications 4:757–767.

    Google Scholar 

  • Haltiner, J., J. B. Zedler, K. E. Boyer, G. D. Williams and J. C. Callaway. 1997. Influence of physical processes on the design, functioning and evolution of restored tidal wetlands in California (USA). Wetlands Ecology and Management 4:73–91.

    Article  Google Scholar 

  • Havens, K. J., L. M. Varnell and J. G. Bradshaw. 1995. An assessment of ecological conditions in a constructed tidal marsh and two natural reference tidal marshes in coastal Virginia. Ecological Engineering 4:117–141.

    Article  Google Scholar 

  • Hoiland, W. K., F. W. Rabe and R. C. Biggam. 1994. Recovery of macroinvertebrate communities from metal pollution in the South Fork and mainstream of the Coeur ďAlene River, Idaho. Water Environment Research 66:84–88.

    CAS  Google Scholar 

  • Hugueny, B., S. Camara, B. Samoura and M. Magassouba. 1996. Applying an index of biotic integrity based on fish assemblages in a West African river. Hydrobiologia 331:71–78.

    Article  Google Scholar 

  • Johnson, J. M. 1999. Fish use of a southern California salt marsh. Thesis, San Diego State University. San Diego, California, USA.

    Google Scholar 

  • Karr, J. R. and D. R. Dudley. 1981. Ecological perspective on water quality goals. Environmental Management 5:55–68.

    Article  Google Scholar 

  • Kerans, B. L. and J. R. Karr. 1994. A benthic index of biotic integrity (B-IBI) for rivers of the Tennessee Valley. Ecological Applications 4:768–785.

    Google Scholar 

  • Knott, D. M., E. L. Wenner and P. H. Wendt. 1997. Effects of pipeline construction on the vegetation and macrofauna of two South Carolina, USA, salt marshes. Wetlands 17:65–81.

    Google Scholar 

  • Kwak, T. J. and J. B. Zedler. 1997. Food web analysis of southern California coastal wetlands using multiple stable isotopes. Oecologia 110:262–277.

    Article  Google Scholar 

  • Langis, R., M. Zalejko and J. B. Zedler. 1991. Nitrogen assessments in a constructed and a natural salt marsh of San Diego Bay, California. Ecological Applications 1:40–51.

    Google Scholar 

  • LaSalle, M. W., M. C. Landin and G. S. Jerre. 1991. Evaluation of the flora and fauna of a Spartina alterniflora marsh established on dredged material in Winyah Bay, South Carolina. Wetlands 11:191–208.

    Google Scholar 

  • Lindau, C. W. and L. R. Hosner. 1981. Substrate characterization of an experimental marsh and three natural marshes. Soil Science Society of America Journal 45:1171–1176.

    Article  CAS  Google Scholar 

  • Magnuson, J. J., H. A. Reiger, W. J. Christie and W. C. Sonzogni. 1980. To rehabilitate and restore Great Lakes ecosystems. Pages 95–112 in J. Cairns, editor. The recovery process in damaged ecosystems. Ann Arbor Science, Ann Arbor, Michigan, USA.

    Google Scholar 

  • Meffe, G. K., C. R. Carroll and Contributors 1997. Principles of conservation biology, second edition. Sinauer Associates, Inc. Sunderland, Massachusetts, USA.

    Google Scholar 

  • Miller, J. A. and C. A. Simenstad. 1997. A comparative assessment of natural and created estuarine slough as rearing habitat for juvenile chinook and coho salmon. Estuaries 20:792–806.

    Google Scholar 

  • Minello, T. J. and R. J. Zimmerman. 1992. Utilization of natural and transplanted Texas salt marshes by fish and decapod crustaceans. Marine Ecology Progress Series 90:273–285.

    Google Scholar 

  • Minns, C. K., V. W. Cairns, R. G. Randall and J. E. Moore. 1994. An index of biotic integrity (IBI) for fish assemblages in the littoral zone of Great Lakes’ areas of concern. Canadian Journal of Fisheries and Aquatic Systems 51:1804–1822.

    Google Scholar 

  • Mitsch, W. J. and J. G. Gosselink. 1993. Wetlands, second edition. Van Nostrand Reinhold, New York, New York, USA.

    Google Scholar 

  • Moy, L. D. and L. A. Levin. 1991. Are Spartina marshes a replaceable resource? A functional approach to the evaluation of marsh creation efforts. Estuaries 14:1–16.

    Google Scholar 

  • Naeem, S., L. J. Thompson, S. P. Lawler, J. H. Lawton and R. M. Woodfin. 1994. Declining biodiversity can alter the performance of ecosystems. Nature 368:734–737.

    Article  Google Scholar 

  • National Research Council. 1992. Restoration of aquatic ecosystems. National Academy Press, Washington, District of Columbia, USA.

    Google Scholar 

  • Pacific Estuarine Research Laboratory (PERL). 1990. A manual for assessing restored and natural coastal wetlands with examples from southern California. California Sea Grant Report No. T-CSGCP-021. La Jolla, California, USA.

    Google Scholar 

  • -1997. The status of constructed wetlands at Sweetwater Marsh National Wildlife Refuge. Annual report to the California Department of Transportation, District 11, San Diego, California, USA.

    Google Scholar 

  • Peck, M. A., P. E. Fell, E. A. Allen, J. A. Gieg, C. R. Guthke and M. D. Newkirk. 1994. Evaluation of a tidal marsh restoration: comparison of selected macroinvertebrate populations on a restored impounded valley marsh and an unimpounded valley marsh within the same salt marsh system in Connecticut, USA. Environmental Management 18:283–293.

    Google Scholar 

  • Roth, N. E., J. D. Allen and D. L. Erickson. 1996. Landscape influences on stream biotic integrity assessed at multiple spatial scales. Landscape Ecology 11:141–156.

    Google Scholar 

  • Rulifson, R. A. 1991. Finfish utilization of man-initiated and adjacent natural creeks of South Creek Estuary, North Carolina, using multiple gear types. Estuaries 14:447–464.

    Google Scholar 

  • Sacco, J. N., E. D. Seneca and T. R. Wentworth. 1994. Infaunal community development of artificially established salt marshes in North Carolina. Estuaries 17:489–500.

    Google Scholar 

  • Scatolini, S. R. and J. B. Zedler. 1996. Epibenthic invertebrates of natural and constructed marshes of San Diego Bay. Wetlands 16:24–37.

    Article  Google Scholar 

  • Seneca, E. D., S. W. Broome, W. W. Woodhouse, Jr., L. M. Cammen and J. T. Lyon, III. 1976. Establishing Spartina alterniflora marsh in North Carolina. Environmental Conservation 3:185–188.

    Article  Google Scholar 

  • Shields, F. D., S. S. Knight and C. M. Cooper. 1995. Use of the index of biotic integrity to assess physical habitat degradation in warm water streams. Hydrobiologia 312:191–208.

    Article  Google Scholar 

  • Shreffler, D. K., C. A. Simenstad and R. M. Thom. 1990. Temporary residence by juvenile salmon in a restored estuarine wetland. Canadian Journal of Fisheries and Aquatic Sciences 47:2079–2984.

    Article  Google Scholar 

  • Simenstad, C. A. and R. M. Thorn. 1996. Functional equivalency trajectories of the restored Gog-Le-Hi-Te estuarine wetland. Ecological Applications 6:38–56.

    Google Scholar 

  • Tilman, D. and J. A. Downing. 1994. Biodiversity and stability in grasslands. Nature 367:363–365.

    Article  Google Scholar 

  • Tilman, D., D. Wedin and J. Knops. 1996. Productivity and sustainability influenced by biodiversity in grassland ecosystems. Nature 379:718–720.

    Article  CAS  Google Scholar 

  • Webb, J. W. and C. J. Newling. 1985. Comparison of natural and man-made salt marshes in Galveston Bay complex, Texas. Wetlands 4:75–86.

    Google Scholar 

  • Whittaker, R. H. 1975. Communities and ecosystems, second edition. Macmillan Publishing Company, Inc., New York, New York, USA.

    Google Scholar 

  • Williams, G.D. and J.B. Zedler. 1999. Fish assemblage composition in constructed and natural tidal marshes of San Diego Bay: Relative influence of channel morphology and restoration history. Estuaries 22:702–716.

    Google Scholar 

  • Zalejko, M. K. 1989. Nitrogen fixation in a natural and a constructed southern California salt marsh. Thesis, San Diego State University, San Diego, California, USA.

    Google Scholar 

  • Zedler, J. B. 1993. Canopy architecture of natural and planted cordgrass marshes: selecting habitat evaluation criteria. Ecological Applications 3:123–138.

    Google Scholar 

  • Zedler, J.B. and J.C. Callaway. In press. Evalutating the progress of engineered tidal wetlands. Ecological Engineering.

    Google Scholar 

  • Zedler, J. B., J. C. Callaway, J. Desmond, G. Vivian-Smith, G. Williams, G. Sullivan, A. Brewster and B. Bradshaw. 1999. Californian salt marsh vegetation: an improved model of spatial pattern. Ecosystems 2:19–35.

    Article  Google Scholar 

  • Zedler, J. B. and R. Langis. 1991. Comparisons of constructed and natural salt marshes of San Diego Bay. Restoration & Management Notes 9:21–25.

    Google Scholar 

  • Zedler, J. B. and C. S. Nordby. 1986. The ecology of Tijuana Estuary: an estuarine profile. U.S. Fish Wild. Serv. Biol. Rep. 85 (7.5).

    Google Scholar 

  • Zedler, J. B. and A. Powell. 1993. Problems in managing coastal wetlands: complexities, compromises and concerns. Oceanus 36:19–28.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Kluwer Academic Publishers

About this chapter

Cite this chapter

Zedler, J.B., Lindig-Cisneros, R. (2002). Functional Equivalency of Restored and Natural Salt Marshes. In: Weinstein, M.P., Kreeger, D.A. (eds) Concepts and Controversies in Tidal Marsh Ecology. Springer, Dordrecht. https://doi.org/10.1007/0-306-47534-0_26

Download citation

  • DOI: https://doi.org/10.1007/0-306-47534-0_26

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-0-7923-6019-3

  • Online ISBN: 978-0-306-47534-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics