Skip to main content

Some Functions of the Essential Trace Element, Selenium

  • Chapter
  • First Online:
Trace Elements in Man and Animals 10

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
€32.70 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (Netherlands)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 117.69
Price includes VAT (Netherlands)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR 163.49
Price includes VAT (Netherlands)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Alsina, B., Serras, F., Baguna, J., and Corominas, M., 1998, patufet, the gene encoding the Drosophila melanogaster homologue of selenophosphate synthetase, is involved in imaginal disc morphogenesis. Mol. Gen Genet257:113–123.

    CAS  PubMed  Google Scholar 

  • Berry, M.J., Banu, L., and Larsen, P.R., 1991, Type I iodothyronine deiodinase is a selenocysteine-containing enzyme. Nature349:438–440.

    CAS  Google Scholar 

  • Berry, M.J., Banu, L., Harney, J.W., and Larsen, P.R., 1993, Functional characterization of the eukaryotic SECIS elements which direct selenocysteine insertion at UGA codons. EMBO J.12:3315–3322.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bjornstedt, M., Hamberg, M., Kumar, S., Xue, J., and Holmgren, A., 1995, Human thioredoxin reductase directly reduces lipid hydroperoxides by NADPH and selenocystine strongly stimulates the reaction via catalytically generated selenols. J. Biol. Chem.270:11761–11764.

    CAS  PubMed  Google Scholar 

  • Bock, A., 1999, Biosynthesis of selenoproteins—an overview. BioFactors 9:(in press).

    Google Scholar 

  • Bock, A. and Stadtman, T.C., 1988, Selenocysteine, a highly specific component of certain enzymes, is incorporated by a UGA-directed co-translational mechanism. BioFactors1:245–250.

    CAS  PubMed  Google Scholar 

  • Chambers, I., Frampton, J., Goldfarb, P., Affara, N. McBain, W, and Harrison, P.R., 1986, The structure of the mouse glutathione peroxidase gene: the selenocysteine in the active site is encoded by the “termination” codon, TGA. EMBO J.5:1221–1227.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Cone, J.E., del Rio, M., Davis, J.N., and Stadtman, T.C., 1976, Chemical characterization of the selenoprotein component of clostridial glycine reductase: Identification of selenocysteine as the organoselenium moiety. Proc. Nat. Acad. Sci. USA.73:2659–2663.

    CAS  PubMed  Google Scholar 

  • Dilworth, G.L., 1982, Properties of the selenium-containing moiety of nicotinic acid hydroxylase from Clostridium barkeri. Arch. Biochem. Biophys.219:30–38.

    CAS  PubMed  Google Scholar 

  • Ehrenreich, A., Forchhammer, K., Tormay, P., Veprek, B., and Bock, A., 1992, Selenoprotein synthesis in E. coli. Purification and characterization of the enzyme catalyzing selenium activation. Eur. J. Biochem.206:767–773.

    CAS  PubMed  Google Scholar 

  • Flohe, L., Gunzler, W.A., and Schock, H.H., 1973, Glutathione peroxidase: A selenoenzyme. FEBS Lett.32:132–134.

    CAS  PubMed  Google Scholar 

  • Forchhammer, K., Leinfelder, W., Boesmiller, K., Veprek, B., and Bock, A., 1991, Selenocysteine synthase from Escherichia coli. J. Biol. Chem.266:6318–6323.

    CAS  PubMed  Google Scholar 

  • Garcia, G.E. and Stadtman, T.C., 1992, Clostridium sticklandii glycine reductase selenoprotein A gene: Cloning, sequencing and expression in Escherichia coli. J. Bacteriol.174:7080–7089.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gasdaska, P.Y., Gasdaska, J.R., Cochran, S., and Powis, G., 1995, Cloning and sequencing of human thioredoxin reductase. FEBS Lett.373:5–9.

    CAS  PubMed  Google Scholar 

  • Gladyshev, V.N., Jeang, K.-T., and Stadtman, T.C., 1996, Selenocysteine, identified as the penultimate C-terminal residue in human T-cell thioredoxin reductase, corresponds to TGA in the human placental gene. Proc. Nat. Acad. Sci. USA93:6146–6151.

    CAS  PubMed  Google Scholar 

  • Glass, R.S., Singh, W.P., Jung, W., Veres, Z., Scholz, T.D., and Stadtman, T.C., 1993, Monoselenophosphate: Synthesis, characterization and identity with the prokaryotic biological selenium donor, Compound SePX. Biochemistry32:12555–12559.

    CAS  PubMed  Google Scholar 

  • Gorlatov, S.N. and Stadtman, T.C., 1998, Human thioredoxin reductase from HeLa cells: Selective alkylation of selenocysteine in the protein inhibits enzyme activity and reduction with NADPH influences affinity to heparin. Proc. Nat. Acad Sci. USA95:8520–8525.

    CAS  PubMed  Google Scholar 

  • Graham, A., Jenkens, H.E., Smith, N.H., Mandrand-Berthelot, M.-A., Haddock, B.A., and Boxer, D.H., 1980, The synthesis of formate dehydrogenase and nitrate reductase proteins in various fdh and chl mutants of Escherichia coli. FEMS Microbiol. Lett.7:145–151.

    CAS  Google Scholar 

  • Guimaraes, M.J., Peterson, D., Vicari, A., Cocks, B.G., Copeland, N.G., Gilbert, D.J., Ferrick, D.A., Kastelein, R.A., Bazan, J.F., and Zlotnik, A., 1996, Identification of a novel selD homolog from eukaryotes, bacteria and archae: is there an autoregulatory mechanism in selenocysteine metabolism? Proc. Nat. Acad. Sci USA93:15086–15091.

    CAS  PubMed  Google Scholar 

  • Haddock, B.A. and Mandrand-Berthelot, M.-A., 1982, Escherichia coli formate-to-nitrate respiratory chain: genetic analysis. Biochem. Soc. Trans.10:478–480.

    CAS  PubMed  Google Scholar 

  • Heider, J. and Bock, A., 1993, Selenium metabolism in microorganisms. Adv. Microbial Phys.35:71–109.

    CAS  Google Scholar 

  • Heider, J., Baron, and Bock, A., 1992, Coding from a distance: dissection of the mRNA determinants required for the incorporation of selenocysteine into a protein. EMBO J.11:3759–3766.

    CAS  PubMed  Google Scholar 

  • Hill, K.E., Lloyd, R.S., Yang, J.G., Read, R., and Burk, R.F., 1991, The cDNA for rat selenoprotein P contains 10TGA codons in the open reading frame. J. Biol. Chem.266:10050–10053.

    CAS  PubMed  Google Scholar 

  • Jacob, C., Maret, W., and Vallee, B.L., 1999, Selenium redox biochemistry of zinc-sulfur coordination sites in proteins and enzymes. Proc. Nat. Acad. Sci. USA 96:1910–1914.

    CAS  PubMed  Google Scholar 

  • Kaminski, R., Glass, R.S., Schroeder, T.B., Michalski, J., and Skowronska, A., 1997, Monoselenophosphate: Its hydrolysis and its ability to phosphorylate alcohols and amines. Bioorganic Chem.25:249–259.

    Google Scholar 

  • Kim, I.Y., Veres, Z., and Stadtman, T.C., 1992, Escherichia coli mutant SELD enzymes. J. Biol. Chem.267:10650–19654.

    Google Scholar 

  • Kim, I.Y., Veres, Z., and Stadtman, T.C., 1993, Biochemicl analysis of Escherichia coli selenophosphate synthesis mutants. J. Biol. Chem.268:27020–27025.

    CAS  PubMed  Google Scholar 

  • Lacourciere, G.M. and Stadtman, T.C., 1999, Catalytic properties of selenophosphate synthetases: Comparison of the selenocysteine-containing enzyme from Haemophilus influenzae with the corresponding cysteine-containing enzyme from Escherichia coli. Pro. Nat. Acad. Sci. USA 96:44–48.

    CAS  Google Scholar 

  • Lee, S.-R., Kim, J.-R., Kwon, K.-S., Yoon, H.W., Levine, R.L., Ginsburg, A., and Rhee, S.G., 1999, Molecular cloning and characterization of a mitochondrial selenocysteine-containing thioredoxin reductase from rat liver. J. Biol. Chem.274:4722–4734.

    CAS  PubMed  Google Scholar 

  • Leinfelder, W., Forchhammer, K., Zinoni, F., Sawers, G., Mandrand-Berthelot, M.-A., and Bock, A., 1988a, Escherichia coli genes whose products are involved in selenium metabolism. J. Bact.170:540–546.

    CAS  PubMed  Google Scholar 

  • Leinfelder, W., Forchhammer, K., Veprek, B., Zehelein, E., and Bock, A., 1990, In vitro synthesis of selenocysteyl-tRNAuca from seryl-tRNAuca: Involvement and characterization of the selD gene product. Proc. Nat. Acad. Sci. USA 87:543–547.

    CAS  PubMed  Google Scholar 

  • Leinfelder, W., Zehelein, E., Mandrand-Berthelot, M.-A., and Bock, A., 1988b, Gene for a novel tRNA species that accepts L-serine and cotranslationally inserts selenocysteine. Nature331:723–725.

    CAS  PubMed  Google Scholar 

  • Liu. S.-Y. and Stadtman, T.C., 1997, Heparin-binding properties of selenium-containing thioredoxin reductase from HeLa cells and human lung adenocarcinoma cells. Proc. Nat. Acad. Sci. USA 94:6138–61141.

    CAS  PubMed  Google Scholar 

  • Miranda-Vizuete, A., Damdimopoulos, A.E., Pedrajas, J.R., Gustafsson, J.-A., and Spyrou, G., 1999, The human mitochondrial thioredoxin reductase. cDNA cloning, expression and genomic organization. Eur. J. Biochem.261:405–412.

    CAS  PubMed  Google Scholar 

  • Mullins, L.S., Hong, S.-B., Gibson, G.E., Walker, H., Stadtman, T.C., and Raushel, F.M., 1997, Identification of a phosphorylated enzyme intermediate in the catalytic mechanism for selenophosphate synthetase. J. Am. Chem. Soc.119:6684–6685.

    CAS  Google Scholar 

  • Patterson, E.L., Milstrey, R., and Stokstad, E.L.R., 1957, Effect of selenium in preventing exudative diathesis in chicks. Proc. Soc. Exp. Biol. Med.95:617–620.

    CAS  PubMed  Google Scholar 

  • Persson, B.C., Bock, A., Jackie, H., and Vorbruggen, G., 1997, SelD Homolog from Drosophila lacking selenide-dependent monoselenophosphate synthetase activity. J. Mol. Biol.274:174–180.

    CAS  PubMed  Google Scholar 

  • Pinsent, J., 1954, The need for selenite and molybdate in the formation of formic dehydrogenase by members of the coli-aerogenes group of bacteria. Biochem. J.57:10–16.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Rotruck, J.T., Pope, A.L., Ganther, H.E., Swanson, A.B., Hafeman, D.G., and Hoekstra, W.G., 1973, Selenium: Biochemical role as a component of glutathione peroxidase. Science179:588–590.

    CAS  PubMed  Google Scholar 

  • Schwarz, K. and Foltz, C.M., 1957, Selenium as an integral part of factor 3 against dietary necrotic liver degeneration. J. Am. Chem. Soc.79:3292–3293.

    CAS  Google Scholar 

  • Stadtman, T.C., 1979, Some selenium-dependent biochemical processes. Advances in Enzymology48:1–28. Ed. A. Meister, John Wiley & sons, Inc. N.Y.

    Google Scholar 

  • Stadtman, T.C., 1980a, Biological functions of selenium. Trends Biochem. Sci. (TIBS) 5:203–206.

    CAS  Google Scholar 

  • Stadtman, T.C., 1980b, Selenium-dependent enzymes. Ann. Rev. Biochem.49:93–110.

    CAS  PubMed  Google Scholar 

  • Stadtman, T.C., 1990, Selenium biochemistry. Ann. Rev. Biochem.59:111–127.

    CAS  PubMed  Google Scholar 

  • Stadtman, T.C., 1996, Selenocysteine. Ann. Rev. Biochem.65:83–100.

    CAS  PubMed  Google Scholar 

  • Stadtman, T.C., Davis, J.N., Ching, W.-M., Zinoni, F., and Bock, A., 1991, Amino acid sequence analysis of Escherichia coli formate dehydrogenase (FDHH) confirms that TGA in the gene encodes selenocysteine in the gene product. BioFactors3:21–27.

    CAS  PubMed  Google Scholar 

  • Sunde, R.A. and Evenson, J.K., 1987, Serine incorporation into the selenocysteine moiety of glutathione peroxidase. J. Biol. Chem.262:933–937.

    CAS  PubMed  Google Scholar 

  • Tamura, T. and Stadtman, T.C., 1996, A new selenoprotein from human lung adenocarcinoma cells: Purification, properties and thioredoxin reductase activity. Proc. Nat. Acad. Sci USA 93:1006–1011.

    CAS  PubMed  Google Scholar 

  • Turner, D.C. and Stadtman, T.C., 1973, Purification of protein components of the clostridial glycine reductase system and characterization of protein A as a selenoprotein. Arch. Biochem. Biophys.154:366–381.

    CAS  PubMed  Google Scholar 

  • Ursini, F., Maiorino, M., Brigelius-Flohe, R., Aumann, K.D., Roveri, A., Schomburg, D., and Flohe, L., 1995, The diversity of glutathione peroxidases. Methods Enzymol.252:38–53.

    CAS  PubMed  Google Scholar 

  • Vendeland, S.C., Beilstein, M.A., Chen, C.L., Jensen, O.N., Barofsky, E., and Whanger, P.D., 1993, Purification and properties of selenoprotein W from rat muscle. J. Biol. Chem.268:17103–17107.

    CAS  PubMed  Google Scholar 

  • Vendeland, S.C., Beilstein, M.A., Yeh, J.-Y, Ream, W., and Whanger, P.D., 1995, Rat skeletal muscle selenoprotein W: cDNA clone and mRNA modulation by dietary selenium. Proc. Nat. Acad. Sci. USA 92:8749–8753.

    CAS  PubMed  Google Scholar 

  • Veres, Z., Kim, I.Y., Scholz, T.D., and Stadtman, T.C., 1994, Selenophosphate synthetase: enzyme properties and catalytic reaction. J. Biol. Chem.269:10597–10603.

    CAS  PubMed  Google Scholar 

  • Veres, Z. and Stadtman, T.C., 1994, A purified selenophosphate-dependent enzyme from Salmonella typhimurium catalyzes the replacement of sulfur in 2-thiouridine residues in t-RNAs with selenium. Proc. Nat. Acad. Sci. USA 91:8092–8096.

    CAS  PubMed  Google Scholar 

  • Veres, Z., Tsai, L., Scholz, T.D., Politino, M., Balaban, R.S., and Stadtman, T.C., 1992, Synthesis of 5-methylaminomethyl-2-selenouiridine in tRNAs: 31P NMR studies show the labile selenium donor synthesized by the selD gene product contains selenium bonded to phosphorus. Proc. Nat. Acad. Sci. USA 89:2975–2979.

    CAS  PubMed  Google Scholar 

  • Walker, H., Ferretti, J.A., and Stadtman, T.C., 1998, Isotope exchangestudies on the Escherichia coli selenophosphate synthetase mechanism. Proc. Nat. Acad. Sci. USA 95:2180–2185.

    CAS  PubMed  Google Scholar 

  • Wittwer, A.J. and Stadtman, T.C., 1986, Biosynthesis of 5-methylaminomethyl-2-selenouridine, a naturally occurring nucleoside in Escherichia coli. Arch. Biochem. Biophys.248:540–550.

    CAS  PubMed  Google Scholar 

  • Yamazaki, S., 1982, A selenium-containing hydrogenase from Methanococcus vannielii. J. Biol. Chem.257:7926–7929.

    CAS  PubMed  Google Scholar 

  • Zinoni, F., Birkman, A., Stadtman, T.C., and Bock, A., 1986, Nucleotide sequence and expression of the selenocysteine-containing polypeptide of formate dehydrogenase (formate-hydrogen-lyase-linked) from Escherichia coli. Proc. Nat. Acad. Sci. USA 83:4650–4654.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Kluwer Academic Publishers

About this chapter

Cite this chapter

Stadtman, T.C. (2002). Some Functions of the Essential Trace Element, Selenium. In: Roussel, A.M., Anderson, R.A., Favier, A.E. (eds) Trace Elements in Man and Animals 10. Springer, New York, NY. https://doi.org/10.1007/0-306-47466-2_267

Download citation

  • DOI: https://doi.org/10.1007/0-306-47466-2_267

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-0-306-46378-5

  • Online ISBN: 978-0-306-47466-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics