Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
References
Alsina, B., Serras, F., Baguna, J., and Corominas, M., 1998, patufet, the gene encoding the Drosophila melanogaster homologue of selenophosphate synthetase, is involved in imaginal disc morphogenesis. Mol. Gen Genet257:113–123.
Berry, M.J., Banu, L., and Larsen, P.R., 1991, Type I iodothyronine deiodinase is a selenocysteine-containing enzyme. Nature349:438–440.
Berry, M.J., Banu, L., Harney, J.W., and Larsen, P.R., 1993, Functional characterization of the eukaryotic SECIS elements which direct selenocysteine insertion at UGA codons. EMBO J.12:3315–3322.
Bjornstedt, M., Hamberg, M., Kumar, S., Xue, J., and Holmgren, A., 1995, Human thioredoxin reductase directly reduces lipid hydroperoxides by NADPH and selenocystine strongly stimulates the reaction via catalytically generated selenols. J. Biol. Chem.270:11761–11764.
Bock, A., 1999, Biosynthesis of selenoproteins—an overview. BioFactors 9:(in press).
Bock, A. and Stadtman, T.C., 1988, Selenocysteine, a highly specific component of certain enzymes, is incorporated by a UGA-directed co-translational mechanism. BioFactors1:245–250.
Chambers, I., Frampton, J., Goldfarb, P., Affara, N. McBain, W, and Harrison, P.R., 1986, The structure of the mouse glutathione peroxidase gene: the selenocysteine in the active site is encoded by the “termination” codon, TGA. EMBO J.5:1221–1227.
Cone, J.E., del Rio, M., Davis, J.N., and Stadtman, T.C., 1976, Chemical characterization of the selenoprotein component of clostridial glycine reductase: Identification of selenocysteine as the organoselenium moiety. Proc. Nat. Acad. Sci. USA.73:2659–2663.
Dilworth, G.L., 1982, Properties of the selenium-containing moiety of nicotinic acid hydroxylase from Clostridium barkeri. Arch. Biochem. Biophys.219:30–38.
Ehrenreich, A., Forchhammer, K., Tormay, P., Veprek, B., and Bock, A., 1992, Selenoprotein synthesis in E. coli. Purification and characterization of the enzyme catalyzing selenium activation. Eur. J. Biochem.206:767–773.
Flohe, L., Gunzler, W.A., and Schock, H.H., 1973, Glutathione peroxidase: A selenoenzyme. FEBS Lett.32:132–134.
Forchhammer, K., Leinfelder, W., Boesmiller, K., Veprek, B., and Bock, A., 1991, Selenocysteine synthase from Escherichia coli. J. Biol. Chem.266:6318–6323.
Garcia, G.E. and Stadtman, T.C., 1992, Clostridium sticklandii glycine reductase selenoprotein A gene: Cloning, sequencing and expression in Escherichia coli. J. Bacteriol.174:7080–7089.
Gasdaska, P.Y., Gasdaska, J.R., Cochran, S., and Powis, G., 1995, Cloning and sequencing of human thioredoxin reductase. FEBS Lett.373:5–9.
Gladyshev, V.N., Jeang, K.-T., and Stadtman, T.C., 1996, Selenocysteine, identified as the penultimate C-terminal residue in human T-cell thioredoxin reductase, corresponds to TGA in the human placental gene. Proc. Nat. Acad. Sci. USA93:6146–6151.
Glass, R.S., Singh, W.P., Jung, W., Veres, Z., Scholz, T.D., and Stadtman, T.C., 1993, Monoselenophosphate: Synthesis, characterization and identity with the prokaryotic biological selenium donor, Compound SePX. Biochemistry32:12555–12559.
Gorlatov, S.N. and Stadtman, T.C., 1998, Human thioredoxin reductase from HeLa cells: Selective alkylation of selenocysteine in the protein inhibits enzyme activity and reduction with NADPH influences affinity to heparin. Proc. Nat. Acad Sci. USA95:8520–8525.
Graham, A., Jenkens, H.E., Smith, N.H., Mandrand-Berthelot, M.-A., Haddock, B.A., and Boxer, D.H., 1980, The synthesis of formate dehydrogenase and nitrate reductase proteins in various fdh and chl mutants of Escherichia coli. FEMS Microbiol. Lett.7:145–151.
Guimaraes, M.J., Peterson, D., Vicari, A., Cocks, B.G., Copeland, N.G., Gilbert, D.J., Ferrick, D.A., Kastelein, R.A., Bazan, J.F., and Zlotnik, A., 1996, Identification of a novel selD homolog from eukaryotes, bacteria and archae: is there an autoregulatory mechanism in selenocysteine metabolism? Proc. Nat. Acad. Sci USA93:15086–15091.
Haddock, B.A. and Mandrand-Berthelot, M.-A., 1982, Escherichia coli formate-to-nitrate respiratory chain: genetic analysis. Biochem. Soc. Trans.10:478–480.
Heider, J. and Bock, A., 1993, Selenium metabolism in microorganisms. Adv. Microbial Phys.35:71–109.
Heider, J., Baron, and Bock, A., 1992, Coding from a distance: dissection of the mRNA determinants required for the incorporation of selenocysteine into a protein. EMBO J.11:3759–3766.
Hill, K.E., Lloyd, R.S., Yang, J.G., Read, R., and Burk, R.F., 1991, The cDNA for rat selenoprotein P contains 10TGA codons in the open reading frame. J. Biol. Chem.266:10050–10053.
Jacob, C., Maret, W., and Vallee, B.L., 1999, Selenium redox biochemistry of zinc-sulfur coordination sites in proteins and enzymes. Proc. Nat. Acad. Sci. USA 96:1910–1914.
Kaminski, R., Glass, R.S., Schroeder, T.B., Michalski, J., and Skowronska, A., 1997, Monoselenophosphate: Its hydrolysis and its ability to phosphorylate alcohols and amines. Bioorganic Chem.25:249–259.
Kim, I.Y., Veres, Z., and Stadtman, T.C., 1992, Escherichia coli mutant SELD enzymes. J. Biol. Chem.267:10650–19654.
Kim, I.Y., Veres, Z., and Stadtman, T.C., 1993, Biochemicl analysis of Escherichia coli selenophosphate synthesis mutants. J. Biol. Chem.268:27020–27025.
Lacourciere, G.M. and Stadtman, T.C., 1999, Catalytic properties of selenophosphate synthetases: Comparison of the selenocysteine-containing enzyme from Haemophilus influenzae with the corresponding cysteine-containing enzyme from Escherichia coli. Pro. Nat. Acad. Sci. USA 96:44–48.
Lee, S.-R., Kim, J.-R., Kwon, K.-S., Yoon, H.W., Levine, R.L., Ginsburg, A., and Rhee, S.G., 1999, Molecular cloning and characterization of a mitochondrial selenocysteine-containing thioredoxin reductase from rat liver. J. Biol. Chem.274:4722–4734.
Leinfelder, W., Forchhammer, K., Zinoni, F., Sawers, G., Mandrand-Berthelot, M.-A., and Bock, A., 1988a, Escherichia coli genes whose products are involved in selenium metabolism. J. Bact.170:540–546.
Leinfelder, W., Forchhammer, K., Veprek, B., Zehelein, E., and Bock, A., 1990, In vitro synthesis of selenocysteyl-tRNAuca from seryl-tRNAuca: Involvement and characterization of the selD gene product. Proc. Nat. Acad. Sci. USA 87:543–547.
Leinfelder, W., Zehelein, E., Mandrand-Berthelot, M.-A., and Bock, A., 1988b, Gene for a novel tRNA species that accepts L-serine and cotranslationally inserts selenocysteine. Nature331:723–725.
Liu. S.-Y. and Stadtman, T.C., 1997, Heparin-binding properties of selenium-containing thioredoxin reductase from HeLa cells and human lung adenocarcinoma cells. Proc. Nat. Acad. Sci. USA 94:6138–61141.
Miranda-Vizuete, A., Damdimopoulos, A.E., Pedrajas, J.R., Gustafsson, J.-A., and Spyrou, G., 1999, The human mitochondrial thioredoxin reductase. cDNA cloning, expression and genomic organization. Eur. J. Biochem.261:405–412.
Mullins, L.S., Hong, S.-B., Gibson, G.E., Walker, H., Stadtman, T.C., and Raushel, F.M., 1997, Identification of a phosphorylated enzyme intermediate in the catalytic mechanism for selenophosphate synthetase. J. Am. Chem. Soc.119:6684–6685.
Patterson, E.L., Milstrey, R., and Stokstad, E.L.R., 1957, Effect of selenium in preventing exudative diathesis in chicks. Proc. Soc. Exp. Biol. Med.95:617–620.
Persson, B.C., Bock, A., Jackie, H., and Vorbruggen, G., 1997, SelD Homolog from Drosophila lacking selenide-dependent monoselenophosphate synthetase activity. J. Mol. Biol.274:174–180.
Pinsent, J., 1954, The need for selenite and molybdate in the formation of formic dehydrogenase by members of the coli-aerogenes group of bacteria. Biochem. J.57:10–16.
Rotruck, J.T., Pope, A.L., Ganther, H.E., Swanson, A.B., Hafeman, D.G., and Hoekstra, W.G., 1973, Selenium: Biochemical role as a component of glutathione peroxidase. Science179:588–590.
Schwarz, K. and Foltz, C.M., 1957, Selenium as an integral part of factor 3 against dietary necrotic liver degeneration. J. Am. Chem. Soc.79:3292–3293.
Stadtman, T.C., 1979, Some selenium-dependent biochemical processes. Advances in Enzymology48:1–28. Ed. A. Meister, John Wiley & sons, Inc. N.Y.
Stadtman, T.C., 1980a, Biological functions of selenium. Trends Biochem. Sci. (TIBS) 5:203–206.
Stadtman, T.C., 1980b, Selenium-dependent enzymes. Ann. Rev. Biochem.49:93–110.
Stadtman, T.C., 1990, Selenium biochemistry. Ann. Rev. Biochem.59:111–127.
Stadtman, T.C., 1996, Selenocysteine. Ann. Rev. Biochem.65:83–100.
Stadtman, T.C., Davis, J.N., Ching, W.-M., Zinoni, F., and Bock, A., 1991, Amino acid sequence analysis of Escherichia coli formate dehydrogenase (FDHH) confirms that TGA in the gene encodes selenocysteine in the gene product. BioFactors3:21–27.
Sunde, R.A. and Evenson, J.K., 1987, Serine incorporation into the selenocysteine moiety of glutathione peroxidase. J. Biol. Chem.262:933–937.
Tamura, T. and Stadtman, T.C., 1996, A new selenoprotein from human lung adenocarcinoma cells: Purification, properties and thioredoxin reductase activity. Proc. Nat. Acad. Sci USA 93:1006–1011.
Turner, D.C. and Stadtman, T.C., 1973, Purification of protein components of the clostridial glycine reductase system and characterization of protein A as a selenoprotein. Arch. Biochem. Biophys.154:366–381.
Ursini, F., Maiorino, M., Brigelius-Flohe, R., Aumann, K.D., Roveri, A., Schomburg, D., and Flohe, L., 1995, The diversity of glutathione peroxidases. Methods Enzymol.252:38–53.
Vendeland, S.C., Beilstein, M.A., Chen, C.L., Jensen, O.N., Barofsky, E., and Whanger, P.D., 1993, Purification and properties of selenoprotein W from rat muscle. J. Biol. Chem.268:17103–17107.
Vendeland, S.C., Beilstein, M.A., Yeh, J.-Y, Ream, W., and Whanger, P.D., 1995, Rat skeletal muscle selenoprotein W: cDNA clone and mRNA modulation by dietary selenium. Proc. Nat. Acad. Sci. USA 92:8749–8753.
Veres, Z., Kim, I.Y., Scholz, T.D., and Stadtman, T.C., 1994, Selenophosphate synthetase: enzyme properties and catalytic reaction. J. Biol. Chem.269:10597–10603.
Veres, Z. and Stadtman, T.C., 1994, A purified selenophosphate-dependent enzyme from Salmonella typhimurium catalyzes the replacement of sulfur in 2-thiouridine residues in t-RNAs with selenium. Proc. Nat. Acad. Sci. USA 91:8092–8096.
Veres, Z., Tsai, L., Scholz, T.D., Politino, M., Balaban, R.S., and Stadtman, T.C., 1992, Synthesis of 5-methylaminomethyl-2-selenouiridine in tRNAs: 31P NMR studies show the labile selenium donor synthesized by the selD gene product contains selenium bonded to phosphorus. Proc. Nat. Acad. Sci. USA 89:2975–2979.
Walker, H., Ferretti, J.A., and Stadtman, T.C., 1998, Isotope exchangestudies on the Escherichia coli selenophosphate synthetase mechanism. Proc. Nat. Acad. Sci. USA 95:2180–2185.
Wittwer, A.J. and Stadtman, T.C., 1986, Biosynthesis of 5-methylaminomethyl-2-selenouridine, a naturally occurring nucleoside in Escherichia coli. Arch. Biochem. Biophys.248:540–550.
Yamazaki, S., 1982, A selenium-containing hydrogenase from Methanococcus vannielii. J. Biol. Chem.257:7926–7929.
Zinoni, F., Birkman, A., Stadtman, T.C., and Bock, A., 1986, Nucleotide sequence and expression of the selenocysteine-containing polypeptide of formate dehydrogenase (formate-hydrogen-lyase-linked) from Escherichia coli. Proc. Nat. Acad. Sci. USA 83:4650–4654.
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2002 Kluwer Academic Publishers
About this chapter
Cite this chapter
Stadtman, T.C. (2002). Some Functions of the Essential Trace Element, Selenium. In: Roussel, A.M., Anderson, R.A., Favier, A.E. (eds) Trace Elements in Man and Animals 10. Springer, New York, NY. https://doi.org/10.1007/0-306-47466-2_267
Download citation
DOI: https://doi.org/10.1007/0-306-47466-2_267
Published:
Publisher Name: Springer, New York, NY
Print ISBN: 978-0-306-46378-5
Online ISBN: 978-0-306-47466-8
eBook Packages: Springer Book Archive