Implementation of CMOS Current-Steering D/A Converters

  • Mikael Gustavsson
  • J. Jacob Wikner
  • Nianxiong Nick Tan
Part of the The International Series in Engineering and Computer Science book series (SECS, volume 543)


In this chapter, we have discussed the design and implementation of current-steering DACs for wideband applications. Different structures have been outlined and for high-speed and high-resolution applications we have found the segmented DAC structure to be most suitable. A key design issue is to find the proper number of bits encode into a thermometer code or if multi-segmented structures are needed. We have shown how the performance of the converter depends on errors in the layout by comparing two similar DACs and highlighted the importance of high frequency poles in the output impedance of the unit current sources. We have shown that it is possible to reach an SFDR of over 75 dBc in a standard 3.3 V digital CMOS process and an SFDR of 65 dBc with a single 1.5-V supply voltage.


Current Source Output Impedance Output Resistance Current Switch Transistor Size 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    M.J.M Pelgrom, A.C.J. Duinmaijer, and A.P.G. Welbers, “Matching Properties of MOS Transistors,” IEEE J. of Solid-State Circuits, vol. 24, no. 5, pp. 1433–9, Oct. 1989CrossRefGoogle Scholar
  2. [2]
    H.J. Schouwenaars, D.W.J. Groeneveld, and H.A.H. Termeer, “A Low-Power Stereo 16-bit CMOS D/A Converter for Digital Audio,” IEEE Journal of Solid-State Circuits, Vol. 23, pp. 1290–1297, Dec. 1988.CrossRefGoogle Scholar
  3. [3]
    K.O. Andersson and J.J. Wikner, “Modeling of the Influence of Graded Element Matching Errors in CMOS Current-Steering DACs,” in Proc. of the 17th NorChip Conference, NORCHIP’99, Oslo, Norway, Nov. 7–8, 1999Google Scholar
  4. [4]
    T. Miki, Y. Nakamura, M. Nakaya, S. Asai, Y. Akasaka, Y. Horiba, “An 80 MHz 8-bit CMOS D/ A Converter,” IEEE Journal of Solid-State Circuits, Vol. 21, pp. 983–988, Dec. 1986.CrossRefGoogle Scholar
  5. [5]
    C.H. Lin and K. Bult, “A 10 b 250 M sample/s CMOS DAC in 1 mm2” in Proc. of the 1998 International Solid-State Circuits Conference, ISSCC’98, 1998.Google Scholar
  6. [6]
    A Van den Bosch, M. Borremans, J. Vandenbussche, G. Van der Plas, A. Marques, J. Bastos. M. Steyaert, G. Gielen, and W. Sansen, “A 12 bit 200 MHz low glitch CMOS D/A converter,” in Proc. of the 1998 International Custom Integrated Circuits Conference, CICC’98, 1998.Google Scholar
  7. [7]
    Analog Devices, AD9764, TxDAC series, 1999.Google Scholar
  8. [8]
    H. Kohno, Y. Nakamura, et al., “350-MS/s 3.3-V 8-bit CMOS D/A Converter Using a Delayed Driving Scheme,” in Proc. of the IEEE 1995 Custom Integrated Circuits Conference, pp. 211–4, 1995.Google Scholar
  9. [9]
    Ji Hyun Kim and Kwang Sub Yoon, “A 3.3V-70MHz Low Power 8 bit CMOS Digital to Analog Converter with two-stage current cell matrix structure,” In Proc. of the, 1997.Google Scholar
  10. [10]
    M. Otsuka, S. Ichiki, T. Tskuada, T. Matsuura, and K. Maio, “Low-Power, Small-Area 10bit D/A Converter for Cell-Based IC,” In Proc. 1995 IEEE symposium on Low Power Electronics, pp. 66–67, 1995Google Scholar
  11. [11]
    Ki-Hong Ryu, et al., “Design of a 3.3V 12bit CMOS D/A Converter with a high linearity,” In Proc. of the, 1999.Google Scholar
  12. [12]
    D.A. Johns and K. Martin, Analog Integrated Circuit Design, John Wiley & Sons, New York, U.S.A., 1997, 0-471-14448-7zbMATHGoogle Scholar
  13. [13]
    H. Tuinhout, M. J. M. Pelgrom, R. Penning de Vries, and M. Vertregt, “Effects of Metal Coverage on MOSFET Matching,” in Proc. of the Intťl Electron Devices Meeting (IEDM’96), pp. 735–8, San Fransisco, CA, USA, Dec. 8–11, 1996Google Scholar
  14. [14]
    J. Bastos, M. Steyaert, A. Pergoot, and W. Sansen, “Mismatch characterization of submicron MOS transistors,”, Analog Integrated Circuits and Signal Processing, vol. 12, no. 2, pp. 95–106, Feb. 1997CrossRefGoogle Scholar
  15. [15]
    I.H.H. Jørgensen and S.A. Tunheim, “A 10-bit 100M Samples/s BiCMOS D/A Converter,” Analog Integrated Circuits and Signal Processing, vol. 12, pp. 15–28, 1997CrossRefGoogle Scholar
  16. [16]
    B.E. Jonsson, “Design of Power Supply Lines in High-Performance SI and Current-Mode Circuits,” in Proc. of the 15th Norchip Sem., pp. 245–50, Tallinn, Estonia, Nov. 10–11, 1997Google Scholar
  17. [17]
    C. Toumazou, J. B. Hughes, and N. C. Battersby, Switched-Currents: an Analogue Technique for Digital Technology, Peter Peregrinus, Stevenage, UK, 1993, 0-86341-294-7CrossRefGoogle Scholar
  18. [18]
    N. Tan, “A 1.5-V 3-mW 10-bit 50 MS/s CMOS DAC with Low Distortion and Low Intermodulation in Standard Digital CMOS Process,” in Proc. of the 1997 IEEE Custom Integrated Circuits Conf. (CICC’97), pp. 599–602, Santa Clara, CA, USA, May 1997Google Scholar
  19. [19]
    M. Ismail and T. Fiez, Analog VLSI: Signal and Information Processing, McGraw-Hill, New York, NY, USA, 1994, 0-07-113387-9Google Scholar
  20. [20]
    P. J. Fish, Electronic Noise and Low Noise Design, Macmillan, Basingstoke, UK, 1993, 0-333-57310-2CrossRefGoogle Scholar
  21. [21]
    A. Biman and D. G. Nairn, “Trimming of Current Mode DACs by Adjusting Vť” in Proc. of the 1996 IEEE Intťl Symp. on Circuits and Systems (ISCAS’96), vol. 1, pp. 33–6, Atlanta, GA, USA, May 12–15, 1996Google Scholar
  22. [22]
    R. J. van de Plassche, Integrated Analog-to-Digital and Digital-to-Analog Converters, Kluwer Academic Publishers, Boston, MA, USA, 1994, 0-7923-9436-4CrossRefGoogle Scholar
  23. [23]
    C. Toumazou, J.B. Hughes, and N.C. Battersby, Switched-Currents — an analogue technique for digitial technology, IEE, Peter Peregrinus, London, UK, 1993CrossRefGoogle Scholar
  24. [24]
    N. Tan, E. Cijvat, and H. Tenhunen, “Design and implementation of High-Performance CMOS D/ A Converter, ” In Proc. 1997 IEEE International Symposium on Circuits and Systems, ISCAS’97, Hong Kong, Vol I. pp. 421–424, 1997Google Scholar
  25. [25]
    J.J. Wikner and N. Tan, “A CMOS Digital-to-Analog Converter Chipset for Telecommunication,” IEEE Magazine on Circuits and Devices, Vol. 13, No. 5, pp. 11–16, Sep. 1997CrossRefGoogle Scholar
  26. [26]
    N. Tan and J.J. Wikner, “A CMOS Digital-to-Analog Converter Chipset for Telecommunication,” IEEE Magazine on Circuits and Devices, vol. 13, no. 5, pp. 11–16, Sept. 1998CrossRefGoogle Scholar
  27. [27]
    M.D. Dallet, Contribution à la Caractérisation des Convertisseurs Analogique-Numériques: Evaluation des Méthodes el Mise en Ouvre de Noveaux Procédés, These no. 1249, LĽuniversite de Bordeaux I, France, Jan. 1995Google Scholar
  28. [28]
    J.S. Chow, J.A.C. Bingham, and M.S. Flowers, “Mitigating Clipping Noise in Multi-Carrier Systems,” in Proc. of the 1997 IEEE Inťl Conf. on Communications (ICC’97), vol. 2, pp. 715–19, Montreal, Canada, June 8–12, 1997Google Scholar
  29. [29]
    D.J.G. Mestdagh, P. Spruyt, and B. Biran, “Analysis of Clipping Effect in DMT-Based ADSL Systems,” in Proc. of the 1994 IEEE Intťl Conf. on Communications (1CC’94), vol. 1, pp. 293–300, New Orleans, LA, USA, May 1994Google Scholar
  30. [30]
    C. Tellambura, “Upper Bound on the Peak Factor of N-Multiple Carriers,” Electronics Letters, vol. 33, no. 19, pp. 1608–9, 1997CrossRefGoogle Scholar
  31. [31]
    J.J. Wikner, “Measurements of a CMOS DAC Chipset,” Internal Report, LiTH-ISY-R-1983, Linköping University, Sweden, 1998.Google Scholar
  32. [32]
    G. Stehr, F. Szidarovsky, and O.A. Paulusinski, and D. Andersson, “Performance Optimization of binary weighted current-steering D/A converters,” Applied Mathematics and Computation, to be published, 1999.Google Scholar

Copyright information

© Kluwer Academic Publishers 2002

Authors and Affiliations

  • Mikael Gustavsson
  • J. Jacob Wikner
  • Nianxiong Nick Tan

There are no affiliations available

Personalised recommendations