Skip to main content

Preservation of Biogenic Carbon Isotopic Signals in Plio-Pleistocene Bone and Tooth Mineral

  • Chapter
Biogeochemical Approaches to Paleodietary Analysis

Part of the book series: Advances in Archaeological and Museum Science ((AAMS,volume 5))

Abstract

A key test for establishing the integrity of stable carbon isotope data from the mineral phase of fossil bones and teeth was the demonstration that only small differences existed between mean values for modern browsers and their fossil counterparts. The small difference increased with age; hence it was interpreted solely in terms of diagenesis. However, re-examination of the data suggests that the modern values used as references could themselves be anomalously depleted due to the effects on modern atmospheric CO2 of fossil fuel burning. Here carbon isotope results for animals of predictable diet at both ends of the carbon isotope “spectrum” are compared from sites with isotopically different depositional contexts and ages, in order to re-evaluate the effects of diagenesis. Where matrix carbonates are relatively enriched in 13C; the distinction between depleted browser values and enriched matrix material remains the most useful test, but where deposit carbonates are more depleted, the comparison between enriched grazers and depleted matrix values is more useful. The results for enamel and bone apatite of both browsers and grazers indicate that for about the first 100,000 years at least, isotopic differences observed between the modern and their fossil counterparts are attributable mainly to

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Ambrose, S.H. 1998 Prospects for stable isotopic analysis of Later Pleistocene hominid diets in West Asia and Europe. In Akazawa, T., Aoki, K. and Bar-Yosef, O., eds., Neanderthals and Modem Humans in West Asia. New York, Plenum Press: 277–289.

    Google Scholar 

  • Ambrose, S.H. and Norr, L. 1993 Experimental evidence for the relationship of carbon isotope ratios of whole diet and dietary protein to those of bone collagen and carbonate. In Lambert, J.B. and Grupe, G., eds., Prehistoric Human Bone: Archaeology at the Molecular Level. Berlin, Springer-Verlag: 1–37.

    Google Scholar 

  • Anderson, T.F. 1969 Self-diffusion of carbon and oxygen in calcite by isotope exchange with carbon dioxide. Journal of Geophysical Research 74: 3918–3932.

    Google Scholar 

  • Avery, D.M. 1992 The environment of early modern humans at Border cave, South Africa: micromammalian evidence. Palaeogeography, Palaeoclimatolology Palaeoecology 91: 71–87.

    Google Scholar 

  • Ayliffe, L.K., Chivas, A.R. and Leakey, M.G. 1994 The retention of primary oxygen isotope compositions of fossil elephantskeletal phosphate. Geochimica et Cosmochimica Acta 58: 5291–5298.

    Article  Google Scholar 

  • Baud, C.S., Bang, S. and Very, J.M. 1977 Minor elements in bone mineral and their effects on its solubility. Journal de Biologie Buccale 5: 195–207.

    Google Scholar 

  • Beaumont, P.B., de Villiers, H. and Vogel, J.C. 1978 Modern man in sub-Saharan Africa prior to 49,000 years B.P.: a review and evaluation with particular reference to Border Cave. South African Journal of Science 74: 409–419.

    Google Scholar 

  • Bell, L.S. and Lee-Thorp, J.A. in press Advances in the study of human skeletal remains: a joint perspective. In Cox, ed., Grave Concerns, Council for British Archaeology.

    Google Scholar 

  • Besha, K., Key, C., Glimcher, M., Schimizu, M. and Griffin, R.G. 1990 Solid state carbon-13 and proton NMR studies of carbonate-containing calcium phosphates and enamel. Journal of Solid State Chemistry 84: 71–81.

    Google Scholar 

  • Betts, F., Blumenthal, N.C. and Posner, A.S. 1981 Bone mineralization. Journal of Crystal Growth 53: 63–73.

    Article  Google Scholar 

  • Biltz, R.M. and Pellegrino, E.D. 1977 The nature of bone carbonate. Clinical Orthopaedics and Related Research 129: 279–292.

    Google Scholar 

  • Blumenthal, N.C., Belts, F. and Posner, A.S. 1975 Effect of carbonate and biological macromolecules on the formalion and properties of hydroxyapatite. Calcified Tissue Research 18: 81–90.

    Google Scholar 

  • -1977 Stabilization of amorphous calcium phosphate by Mg and ATP Calcified Tissue Research 23: 245–250.

    Article  Google Scholar 

  • Bocherens, H., Koch, P.L., Mariotti, A., Geraads, D. and Jaeger, J.-J. 1996 Isotopic biogeochemistry (13C, 18CO O ) of mammalian enamel from African Pleistocene hominid sites. Palaios 11: 306–318.

    Google Scholar 

  • Boskey, A.L. 1981 Current concepts of the physiology and biochemistry of calcification. Clinical Orthopaedics and Related Research 157: 165–195.

    Google Scholar 

  • Boyde, A. 1967 The development of enamel structure. Proceedings of the Royal Society of Medicine 60: 923–933.

    Google Scholar 

  • Brain, C.K. 1988 New information from the Swartkrans cave of relevance to robust australopithecines. In Grine, F.E., ed., Evolutionary History of the Robust Australopithecines. New York, Aldine de Gruyter: 405–426.

    Google Scholar 

  • Brain, C.K., Churcher, C.S., Clark, J.D., Grine, F.E., Shipman, P., Susman, R.L., Turner, A. and Watson, V. 1988 New evidence of early hominids, their culture and environment from Swartkrans Cave. South African Journal of Science 84: 828–835.

    Google Scholar 

  • Brink, J.S. and Lee-Thorp, J.A. 1992 The feeding niche of an extinct springbok, Antidorcas bondi (Antilopinae, Bovidae), and its palaeoenvironmental meaning. South African Journal of Science 88: 227–229.

    Google Scholar 

  • Bryant, J.D., Luz, B. and Froelich, P.N. 1994 Oxygen isotopic composition of fossil horse tooth phosphate as a record of continental palaeoclimate. Palaeogeography, Palaeoclimatology, Palaeoecology 107: 303–316.

    Google Scholar 

  • Butzer, K.W. 1979a Preliminary notes on the geology of Die Kelders. Annals of the South African Museum 78: 225–228.

    Google Scholar 

  • -1979b Sediment stratigraphy of Middle Stone sequences at Klasies River Mouth. South African Archaeology Bulletin 33: 141–151.

    Google Scholar 

  • Butzer, K.W, Beaumont, P.B. and Vogel, J.C. 1978 Lithostratigraphy of Border Cave: a Middle Stone Age sequence beginning at c. 195,000 B.P. Journal of Archaeological Science 5: 317–341.

    Google Scholar 

  • Cerling, T., Harris, J.M., Ambrose, S.H., Leakey, M.G. and Solounias, N. 1998 Dietary and environmental reconstruction with stable isotope analyses of herbivore tooth enamel from the Miocene locality of Fort Ternan. Journal of Human Evolution 33: 635–650.

    Google Scholar 

  • Chickerur, N.S., Tung, M.S. and Brown, WE. 1980 A mechanism for the incorporation of carbonate into apatite. Calcified Tissue International 32: 55–62.

    Google Scholar 

  • Deacon, H.J. and Geleijnse, VB. 1988 The stratigraphy and sedimentology of the main site sequence, Klasies River, South Africa. South African Archaeological Bulletin 43: 5–14.

    Google Scholar 

  • DeMenocal, P. 1996 Plio-Pleistocene African climate. Science 270: 53–59.

    Google Scholar 

  • Driessens, F.C.M., van Dijk, J.W.E. and Borrgreven, J.M.P.M. 1978 Biological calcium phosphates and their role in the physiology of bone and dental tissues. 1. Composition and solubility of calcium phosphates. Calcified Tissue Research 26: 127–137.

    Article  Google Scholar 

  • Eanes, E.D. 1979 Enamel apatite: chemistry, structure and properties. Journal of Dental Research Special Issue B: 829–836.

    Google Scholar 

  • Eanes, E.D. and Posner, A.S. 1970 A note on the crystal growth of hydroxyapatite precipitated from aqueous solutions. Materials Research Bulletin 5: 377–384.

    Article  Google Scholar 

  • Ehleringer, J.R., Cerling, T.E. and Helliker, B.R. 1997 C4 photosynthesis, atmospheric CO2 and climate. Oecologia 112: 285–299.

    Article  Google Scholar 

  • Eisenmann, D.R. 1985 Enamel structure. In Ten Cate, A.R., ed., Oral Histology: Development Structure and Function, 2nd Edition. Toronto, C.V Mosby Co.: 198–217.

    Google Scholar 

  • Emrich, K., Emhalt, D.H. and Vogel, J.C. 1970 Carbon isotope fractionation during the precipitation of calcium carbonate. Earth and Planetary Science Letters 8: 363–371.

    Article  Google Scholar 

  • Falkowski, P.G. 1997 Evolution of the nitrogen cycle and its influence on the biological sequestration ofCO2 in the ocean. Nature 387: 272–275.

    Article  Google Scholar 

  • Friedli, H., Lotscher, H., Oeschger, H., Siegenthaler, U. and Stauffer, B. 1986 Ice core record of the 13C/12CO C record in the past two centuries. Nature 324: 237–238.

    Article  Google Scholar 

  • Grün, R., Beaumont, P.B. and Stringer, C. 1990 ESR dating evidence for early modern humans at Border cave in South Africa. Nature 344: 537–539.

    Google Scholar 

  • Hassan, A.A. 1975 Geochemical and Mineralogical Studies on Bone Material and their Implications for Radiocarbon Dating. Unpublished Ph.D. thesis, Southern Methodist University, Texas.

    Google Scholar 

  • Hassan, A.A. and Ortner, D.J. 1977 Inclusions in bone material as a source of error in radiocarbon dating. Archaeometry 19: 131–135.

    Google Scholar 

  • Hassan, A.A., Termine, J.D. and Haynes, C.V. 1977 Mineralogical studies on bone apatite and their implications for radiocarbon dating. Radiocarbon 19: 364–374.

    Google Scholar 

  • Haul, R.A.W. and Stein, L.H. 1955 Diffusion in calcite crystals on the basis of isotope exchange with carbon dioxide. Faraday Society Transactions 51: 1280–1290.

    Google Scholar 

  • Hedges, R.E.M., Lee-Thorp, J.A. and Tuross, N. 1995 Is tooth enamel carbonate a suitable material for radiocarbon dating? Radiocarbon 37: 285–290.

    Google Scholar 

  • Koch, PL., Behrensmeyer, A.K., Tuross, N. and Fogel, M.L. 1990 Isotopic fidelity during bone weathering and burial. Annual Report of the Director, Geophysical Laboratory, 1989–1990. Washington, D.C., Carnegie Institution of Washington: 105–110.

    Google Scholar 

  • Koch, P.L., Fogel, M.L. and Tuross, N. 1994 Tracing the diets of fossil animals using stable isotopes. In Lajtha, K. and Michener, B., eds., Stable Isotopes in Ecology and Environmental Science. Oxford, Blackwell: 63–92.

    Google Scholar 

  • Koch, P.L., Tuross, N. and Fogel, M.L. 1997 The effects of sample treatment and diagenesis on the isotopic integrity of carbonate in biogenic hydroxylapatite. Journal of Archaeological Science 24: 417–429.

    Article  Google Scholar 

  • Koch, P.L., Zachos, J.C. and Gingerich, P.D. 1992 Correlation between isotope records in marine and continental carbon reservoirs near the Paleocene/Eocene boundary. Nature 358: 319–322.

    Article  Google Scholar 

  • Krueger, H.W. 1991 Exchange of carbon with biological apatite. Journal of Archaeological Science 18: 355–361.

    Article  Google Scholar 

  • Krueger, H.W. and Sullivan, C.H. 1984 Models for carbon isotope fractionation between diet and bone. In Turnland, J.F. and Johnson, P.E., eds., Stable Isotopes in Nutrition. ACS Symposium Series 258. Washington, DC, American Chemical Society: 205–222.

    Google Scholar 

  • Land, L.S., Lundelius, E.L. and Valastro, S. 1980 Isotopic ecology of deer bones. Palaeogeography, Palaeoclimatology, Palaeoecology 32: 143–151.

    Article  Google Scholar 

  • Lee-Thorp, J.A. 1989 Stable Carbon Isotopes in Deep Time. The Diets of Fossil Fauna and Hominids. Unpublished Ph.D. dissertation, University of Cape Town.

    Google Scholar 

  • Lee-Thorp, J.A., Sealy, J.C. and van der Merwe, N.J. 1989a Stable carbon isotope ratio differences between bone collagen and bone apatite, and their relationship to diet. Journal of Archaeological Science 16: 585–599.

    Google Scholar 

  • Lee-Thorp, J.A., van der Merwe, N.J. and Brain, C.K. 1989b Isotopic evidence for dietary differences between two extinct baboon species from Swartkrans. Journal of Human Evolution 18: 183–190.

    Google Scholar 

  • Lee-Thorp, J.A. and van der Merwe, N.J. 1987 Carbon isotope analysis of fossil bone apatite. South African Journal of Science 83: 71–74.

    Google Scholar 

  • -1991 Aspects of the chemistry of modern and fossil biological apatite. Journal of Archaeological Science 18: 343–354.

    Google Scholar 

  • Lee-Thorp, J.A., van der Merwe, N.J. and Brain, C.K. 1994 Diet of Australopithecus robustus at Swartkrans deduced from stable carbon isotope ratios. Journal of Human Evolution 27: 361–372.

    Article  Google Scholar 

  • LeGeros, R.Z. 1981 Apatites in biological systems. In Pamplin, B., ed., Progress in Crystal Growth and Characterization. Vol. 4. New York, Pergamon Press: 1–45.

    Google Scholar 

  • -1983 Ultrastructural properties of human enamel apatite. In Lazzari, E., ed., Handbook of Experimental Aspects of Oral Biochemistry, Florida, CRC Press: 159–179.

    Google Scholar 

  • LeGeros, R.Z. and Tung, M.S. 1983 Chemical stability of the carbonate-and fluoride-containing apatites. Caries Research 17: 419–429.

    Google Scholar 

  • Leuenberger, M., Siegenthaler, U. and Langway, C.C. 1992 Carbon isotope composition of atmospheric CO2 during the last ice age from an Antarctic ice core. Nature 357: 488–490.

    Article  Google Scholar 

  • MacFadden, P.L., Brock, A. and Partridge, T.C. 1979 Palaeomagnetism and the age of the Makapansgat Limeworks site. Earth and Planetary Science Letters 44: 373–382.

    Article  Google Scholar 

  • Maguire. J.M., Pemberton, D. and Collett, M.H. 1980 The Makapansgat Limeworks grey breccia: hominids, hyenas, hystricids or hillwash? Palaeontologio Africana 23: 75–98.

    Google Scholar 

  • Marino, B.D. and McElroy, M.B. 1991 Isotopic composition of atmospheric CO2 inferred from carbon in C4 plant cellulose. Nature 349: 127–131.

    Article  Google Scholar 

  • Marino, B.D., McElroy, M.B., Salawitch, R. and Spaulding, W.G. 1992 Glacial to interglacial variations in the carbon isotopic composition of atmospheric CO2. Nature 357: 461–4

    Article  Google Scholar 

  • McCrea, J.M. 1950 On the isotopic chemistry of carbonates and a paleotemperature scale. Journal of Chemical Physics 18(6): 849–857.

    Article  Google Scholar 

  • Michel, V., Ildefonse, P. and Morin, G. 1995 Chemical and structural changes in Cervus elephus tooth enamels during fossilization (Lazaret Cave): a combined IR and XRD Rietveld analysis. Applied Geochemistry 10: 145–159.

    Article  Google Scholar 

  • Millard, A.R. and Hedges, R.E.M. 1995 The role of the environment in uranium uptake by buried bone. Journal of Archaeological Science 22: 239–250.

    Article  Google Scholar 

  • Morgan, M.E., Kingston, J.D. and Marino, B.D. 1994 Carbon isotopic evidence for the emergence of C4 plants in the Neogenc from Pakistan and Kenya. Nature 367: 162–165.

    Article  Google Scholar 

  • Nelson, D.G.A., Featherstone, J.D.B., Duncan, J.E and Cuttress, T.W. 1982 Paracrystalline disorder of biological and synthetic carbonate-substituted apatites. Journal of Denial Research 61: 1274–1281.

    Google Scholar 

  • Pellegrino, E.D. and Biltz, R.M. 1968 Bone carbonate and the Ca to P molar ratio. Nature 219: 1261–1262.

    Google Scholar 

  • Person, A., Bocherens, H., Saliège, J.-F, Paris, F., Zeitoun, V. and Gérard, M. 1995 Early diagenetic evolution of bone phosphate: an x-ray diffractometry analysis. Journal of Archaeological Science 22: 211–221.

    Article  Google Scholar 

  • Posner, A.S. 1985 The mineral of bone. Clinical Orthopaedics 200: 87–99.

    Google Scholar 

  • Poyart, C.F., Freminet, A. and Burseaux, E. 1975 The exchange of bone CO2 in vivo. Respiratory Physiology 25: 101–107.

    Google Scholar 

  • Quade, J., Cerling, T.E., Barry, J.C., Morgan, M.E., Pilbeam, D.E., Chivas, A.R., Lee-Thorp, J.A. and van der Merwe, N.J. 1992 A 16-Ma record of paleodiet using carbon and oxygen isotopes in fossil teeth from Pakistan. Chemical Geology (Isotope Geoscience) 94: 183–192.

    Google Scholar 

  • Rey, C., Renugopalakrishnan, V., Shimizu, M., Collins, B. and Glimcher, M.J. 1991 A resolution-enhanced Fourier transform spectroscopic study of the environment of the CO 2-3 ion in the mineral phase of enamel during its formation and maturation. Calcified Tissue International 49: 259–268.

    Google Scholar 

  • Rink, W.J. and Schwarcz, H.P. 1995 Tests for diagenesis in tooth enamel: ESR dating signals and carbonate contents. Journal of Archaeological Science 22: 251–255.

    Article  Google Scholar 

  • Saliège, J.-F., Person, A. and Paris, F. 1995 Preservation of 13C/12CO C original ratios and 14CO C dating of the mineral fraction of human bones from Saharan tombs, Niger. Journal of Archaeological Science 22: 301–312.

    Google Scholar 

  • Sarntheim, M., Winn, K., Duplessey, J.-C. and Fontugne, M.R. 1988 Global variations of surface ocean primary productivity in low and mid latitudes: influence on CO2 reservoirs of the deep ocean and atmosphere during the last 21,000 years. Paleoceanography 3: 361–399.

    Google Scholar 

  • Schoeninger, M.J. 1982 Diet and evolution of modern human form in the Middle East. American Journal of Physical Anthropology 58: 37–52.

    Google Scholar 

  • Schoeninger, M.J. and DeNiro, M.J. 1982 Carbon isotope ratios of apatite from bone cannot be used to reconstruct diets of animals. Nature 297: 577–578.

    Article  Google Scholar 

  • Sealy, J.C. 1996 Seasonality of rainfall around the Last Glacial Maximum as reconstructed from carbon isotope analyses of animal bones from Nelson Bay Cave. South African Journal of Science 92: 441–444.

    Google Scholar 

  • Sealy, J.C., van der Merwe, N.J., Sillen, A., Kruger, F.J. and Krueger, H.W. 1991 87Sr/86CO Sr as a dietary indicator in modern and archaeological bone. Journal of Archaeological Science 18: 399–416.

    Article  Google Scholar 

  • Sillen, A. 1986 Biogenic and diagenetic Sr/Ca in Plio-Pleistocene fossils of the Omo Shungura formation. Paleobiology 12: 311–323.

    Google Scholar 

  • -1989 Diagenesis of the inorganic phase of cortical bone. In Price, T.D., ed., Bone Chemistry and Past Behaviour. Cambridge, Cambridge University Press: 211–229.

    Google Scholar 

  • Sillen, A. and LeGeros, R. 1991 Solubility profiles of synthetic apatites and of modern and fossil bones. Journal of Archaeological Science 18: 385–397.

    Google Scholar 

  • Sillen, A. and Morris, A.G. 1996 Diagenesis of bone from Border cave; implications for the age of the Border cave hominids. Journal of Human Evolution 31: 499–506.

    Article  Google Scholar 

  • Sillen, A. and Parkington, J.E. 1996 Diagenesis of bones from Eland’s Bay Cave. Journal of Archaeological Science 23: 535–542.

    Article  Google Scholar 

  • Simpson, D.R. 1972 Problems of the composition and structure of the bone minerals. Clinical Orthopaedics and Related Research 86: 260–286.

    Google Scholar 

  • Singer, R. and Wymer, J. 1982 The Middle Stone Age at Klasies River Mouth in South Africa. Chicago, University of Chicago Press.

    Google Scholar 

  • Smith, B.N. and Epstein, S. 1971 Two categories of 13C/12C ratios for higher plants. Plant Physiology 47: 380–384.

    Google Scholar 

  • Smithers, R.H.N. 1983 The Mammals of the Southern African Sub-region. Pretoria, University of Pretoria.

    Google Scholar 

  • Sullivan, C.H. and Krueger, H.W. 1981 Carbon isotope analysis of separate chemical phases in modern and fossil bone. Nature 292: 333–335.

    Google Scholar 

  • — 1983 Carbon isotope ratios of bone apatite and animal diet reconstruction. Nature 301: 177–178.

    Article  Google Scholar 

  • Summerhayes, C.P., Kroon, D., Rosell-Mele, P. Jordan, R.W., Schrader, H.-J., Hearn, R., Villeneuva, J., Grimalt, J.O. and Eglington, G. 1995 Variability in the Benguela Current upwelling system over the past 70,000 years. Progress in Oceanography 35: 207–251.

    Article  Google Scholar 

  • Tankard, A.J. and Schweitzer, F.R. 1974 The geology of Die Kelders cave and environs: a palaeoen-vironmental study. South African Journal of Science 70: 365–369.

    Google Scholar 

  • Tieszen, L.L. 1991 Natural variations in the carbon isotope values of plants: implications for archaeology, ecology, and paleoecology. Journal of Archaeological Science 18: 227–248.

    Article  Google Scholar 

  • Tiezsen, L.L. and Fagre, T. 1993 Effect of diet quality and composition on the isotopic composition of respiratory CO2 bone collagen, bioapatite and soft tissues. In Lambert, J.B. and Grupe, G., eds., Prehistoric Human Bone: Archaeology at the Molecular Level. Berlin, Springer-Verlag: 121–155.

    Google Scholar 

  • Tuross, N., Behrensmeyer, A.K., Eanes, E.D., Fisher, L.W. and Hare, P.E. 1989 Molecular preservation and crystallographic alterations in a weathering sequence of wildebeest bones. Applied Geochemistry 4: 261–270.

    Google Scholar 

  • Van Klinken, G.J., Richards, M.P. and Hedges, R.E.M. this volume Stable isotopic variations in past European human populations: environmental, ecophysiological and cultural effects. In Ambrose, S. and Katzenberg, M.A., eds., Close to the Bone: Biogeochemical Approaches to Paleodietary Analysis in Archaeology. New York, Plenum Press.

    Google Scholar 

  • Vogel, J.C. 1982 Isotopic evidence for the past climates and vegetation of Africa. Bothalia 14: 391–394.

    Google Scholar 

  • Vrba, E. 1983 Biostratigraphy and chronology, based particularly on Bovidae, of southern African hominid-associated assemblages: Makapansgat, Sterkfontein, Taung, Kromdraai, Swartkrans; also Elandsfontein (Saldanha), Broken Hill (now Kabwe) and Cave of Hearths. In de Lumley, H. and de Lumley, M.A., eds., Proceedings of Congress International de Paléontologie Humaine, Vol. 2. Nice, Union Internationale des Sciences Préhistoriques et Protohistoriques, Nice: 707–752.

    Google Scholar 

  • -1988 Late Pliocene climatic events and hominid evolution. In Grine, F.E., ed., Evolutionary History of the Robust Australopithecus. New York, Aldine de Gruyter: 405–426.

    Google Scholar 

  • Wang, Y. and Cerling, T.E. 1994 A model for fossil tooth and bone diagenesis: implications for paleodiet reconstruction from stable isotopes. Palaeogeography, Palaeoclimatology, Palaeoecology 107: 596–606.

    Google Scholar 

  • Wang, Y., Cerling, T.E. and MacFadden, B.J. 1994 Fossil horses and carbon isotopes: new evidence for Cenozoic dietary, habitat, and ecosystem changes in North America. Palaeogeography, Palaeoclimatology, Palaeoecology 107: 269–279.

    Google Scholar 

  • Weiner, S. and Bar-Yosef, O. 1990 States of preservation of bones from prehistoric sites in the Near East: a survey. Journal of Archaeological Science 17: 187–196.

    Article  Google Scholar 

  • Weiner, S., Goldberg, P. and Bar-Yosef, O. 1993 Bone preservation in Kebara Cave, Israel, using on-site Fourier transform infrared spectrometry. Journal of Archaeological Science 20: 613–627.

    Article  Google Scholar 

  • Wells, A.W. 1971 Cave calcite. Studies in Speleology 2: 129–148.

    Google Scholar 

  • Wheeler, E.J. and Lewis, D. 1977 An X-ray study of the paracrystalline nature of bone apatite. Calcified Tissue Research 24: 243–248.

    Article  Google Scholar 

  • Wright, L. and Schwarcz, H. 1996 Infrared evidence for diagenesis of bone apatite at Dos Pilas: paleodietary implications. Journal of Archaeological Science 23: 933–944.

    Article  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Kluwer Academic Publishers

About this chapter

Cite this chapter

Lee-Thorp, J.A. (2002). Preservation of Biogenic Carbon Isotopic Signals in Plio-Pleistocene Bone and Tooth Mineral. In: Ambrose, S.H., Katzenberg, M.A. (eds) Biogeochemical Approaches to Paleodietary Analysis. Advances in Archaeological and Museum Science, vol 5. Springer, Boston, MA. https://doi.org/10.1007/0-306-47194-9_5

Download citation

  • DOI: https://doi.org/10.1007/0-306-47194-9_5

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-306-46457-7

  • Online ISBN: 978-0-306-47194-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics