Skip to main content

Cocaine Metabolism in Humans after Use of Alcohol Clinical and Research Implications

  • Chapter
Recent Developments in Alcoholism

Part of the book series: Recent Developments in Alcoholism ((RDIA,volume 14))

Abstract

The simultaneous administration of cocaine and alcohol implies a pharmacological interaction at pharmacodynamic and pharmacokinetic levels. The latter involves an alteration of cocaine kinetics and metabolism, as well as the biosynthesis of newly active metabolites, such as cocaethylene. Cocaethylene is metabolized along the same pathways as cocaine. Its detection in biological samples indicates the combined consumption of cocaine and alcohol. From epidemiological and toxicological data, it has been suggested that the combination of alcohol and cocaine produces an increased toxicity in addition to behavioral changes. There has been some debate regarding the contribution of cocaethylene to this rise of toxicity. Its pharmacological and toxicological profile is very similar to cocaine. During the interaction of both substances, the rise in cocaine plasma concentrations can explain many of cardiovascular and behavioral effects observed. The contribution of cocaethylene to the interaction is probably minor; it s effects are likely additive to those of cocaine. Perhaps its longer elimination half-life can help in understanding long-lasting effects of the alcohol-cocaine combination.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Grant BF, Harford TC: Concurrent and simultaneous use of alcohol with cocaine: Result of a national survey. Drug Alcohol Depend 25:97–104, 1990.

    PubMed  CAS  Google Scholar 

  2. Higgins ST, Budney AJ, Bickel WK, et al: Alcohol dependence and simultaneous cocaine and alcohol use in cocaine-dependent patients. J Addict Dis 13:177–189, 1994.

    PubMed  CAS  Google Scholar 

  3. Martin CS, Clifford PR, Maisto SA, et al: Polydrug use in an inpatient treatment sample of problem drinkers. Alcohol Clin Exp Res 20:413–417, 1996.

    PubMed  CAS  Google Scholar 

  4. Brady DT, Sonne S, Randall CL et al: Features of cocaine dependence with concurrent alcohol abuse. Drug Alcohol Depend 39:69–71, 1995.

    PubMed  CAS  Google Scholar 

  5. Salloum IM, Daley DC, Cornelius JR, et al: Disproportionate lethality in psychiatric patients with concurrent alcohol and cocaine abuse. Am J Psychiatry 153:953–955, 1996.

    PubMed  CAS  Google Scholar 

  6. Farré M, de la Torre R, Llorente M, et al: Alcohol and cocaine interactions in humans. J Pharmacol Exp Ther 266:1364–1373, 1993.

    PubMed  Google Scholar 

  7. Higgins ST, Roll JM, Bickel WK: Alcohol pretreatment increases preference for cocaine over monetary reinforcement. Psychopharmacology 123:1–8, 1996.

    Article  PubMed  CAS  Google Scholar 

  8. Budd RD, Muto JJ, Wong JK Drugs of abuse found in fatally injured drivers in Los Angeles County. Drug Alcohol Depend 23:153–158.

    Google Scholar 

  9. Marzuk PM, Tardiff K, Leon AC, et al: Prevalence of recent cocaine use among motor vehicles fatalities in New York City. JAMA 263:250–256, 1990.

    Article  PubMed  CAS  Google Scholar 

  10. Tardiff K, Marzuk PM, Leon AC, et al: Cocaine, opiates, and ethanol in homicides in New York City: 1990 and 1991. J Forensic Sci 40:387–390, 1995.

    PubMed  CAS  Google Scholar 

  11. Vanek VW, Dickey-White H, Signs SA, et al: Concurrent use of cocaine and alcohol by patients treated in the emergency department. Ann Emerg Med 28:508–514, 1996.

    PubMed  CAS  Google Scholar 

  12. Rafla FK, Epstein RL: Identification of cocaine and its metabolites in human urine in the presence of ethyl alcohol. J Anal Toxicol 3:59–63, 1979.

    CAS  Google Scholar 

  13. Wu AHB, Onigbinde TA, Johnson KG, Wimbish GH: Alcohol-specific cocaine metabolites in serum and urine of hospitalized patients. J Anal Toxicol 16:132–136, 1992.

    PubMed  CAS  Google Scholar 

  14. Brookoff D, Rotondo MF, Shaw LM, et al: Cocaethylene levels in patients who test positive for cocaine. Ann Emerg Med 27:316–320, 1996.

    PubMed  CAS  Google Scholar 

  15. Foltin RW, Fischman ME: Ethanol and cocaine interactions in human: Cardiovascular consequences. Pharmacol Biochem Behav 31:877–873, 1989.

    Google Scholar 

  16. Perez-Reyes M, Jeffcoat R: Ethanol/cocaine interaction: Cocaine and cocaethylene plasma concentrations and their relationship to subjective and cardiovascular effects. Life Sci 51:553–563, 1992.

    Article  PubMed  CAS  Google Scholar 

  17. Higgins ST, Rush CR, Bickel WK, et al: Acute behavioral and cardiac effects of cocaine and alcohol combinations in humans. Psychopharmacology 111:285–294, 1993.

    Article  PubMed  CAS  Google Scholar 

  18. McCance-Katz EF, Prince LH, McDougle CJ, et al: Concurrent cocaine-ethanol ingestion in humans: Pharmacology, physiology, behavior, and the role of cocaethylene. Psychopharmacology 111:39–46, 1993.

    Article  PubMed  CAS  Google Scholar 

  19. Farré M, de la Torre R, González ML, et al: Cocaine and alcohol interactions in humans: Neuroendocrine effects and cocaethylene metabolism. JPharmacol Exp Ther 283:164–176, 1997.

    Google Scholar 

  20. Heesch CM, Negus BH, Bost JH, et al: Effects of cocaine on anterior pituitary and gonadal hormones. J Pharmacol Exp Ther 278:1195–1200, 1996.

    PubMed  CAS  Google Scholar 

  21. Inaba T, Stewart DJ, Kalow W: Metabolism of cocaine in man. Clin Pharmacol Ther 23:547–552, 1978.

    PubMed  CAS  Google Scholar 

  22. Inaba T Cocaine: Pharmacokinetics and biotransformation in man. Can J Physiol Pharmacol 67:1154–1157, 1989.

    PubMed  Google Scholar 

  23. Dean RA, Christian CD, Sample RHB, Bosron WF: Human liver cocaine esterases: Ethanolmediated formation of ethylcocaine. FASEB J 5:2735–2739, 1991.

    PubMed  CAS  Google Scholar 

  24. Brzezinski MR, Abraham TL, Stone CL, et al: Purification and characterization of a human liver cocaine carboxylesterase that catalyzes the production of benzoylecgonine and the formation of cocaethylene from alcohol and cocaine. Biochem Pharmacol 48:1747–1755, 1994.

    Article  PubMed  CAS  Google Scholar 

  25. Perez-Reyes M: The order of drug administration: Its effects on the interaction between cocaine and ethanol. Life Sci 55:541–550, 1994.

    Article  PubMed  CAS  Google Scholar 

  26. Smith RM: Ethyl esters of arylhydroxy-and arylhydroxymethoxicocaines in the urines of simultaneous cocaine and alcohol users. J Anal Toxicol 8:38–42, 1984.

    PubMed  CAS  Google Scholar 

  27. De la Torre, R, Farré M, Ortufio J, et al: The relevance of urinary cocaethylene as a metabolite of cocaine under the simultaneous administration of alcohol. J Anal Toxicol 15:223, 1991.

    PubMed  Google Scholar 

  28. Bailey DN: Serial plasma concentrations of cocaethylene, cocaine and ethanol in trauma victims. J Anal Toxicol 17:79–83, 1993.

    PubMed  CAS  Google Scholar 

  29. Jatlow P, Elsworth JD, Bradberry CW, et al: Cocaethylene: A neuropharmacologically active metabolite associated with concurrent cocaine-alcohol ingestion. Life Sci 48:1787–1794, 1991.

    Article  PubMed  CAS  Google Scholar 

  30. Bailey D Comprehensive review of cocaethylene and cocaine concentrations in patients. J ClinPathol 106:701–704, 1996.

    CAS  Google Scholar 

  31. McCance-Katz EF, Price LH, McDougle CJ et al: Concurrent cocaine-ethanol ingestion in humans: Pharmacology, physiology, behavior, and the role of cocaethylene. Psychopharmacology 111:39–46, 1993.

    Article  PubMed  CAS  Google Scholar 

  32. Hearn WL, Flynn DD, Hime GW: Cocaethylene: A unique cocaine metabolite displays high affinity for the dopamine transporter. J Neurochem 56:698–701, 1991.

    PubMed  CAS  Google Scholar 

  33. Katz JL, Terry P, Witkin JM: Comparative behavioral pharmacology and toxicology of cocaine and its ethanol-derived metabolite, cocaine ethylester (cocaethylene). Life Sci 50:1351–1361, 1992.

    Article  PubMed  CAS  Google Scholar 

  34. Perez-Reyes M: Subjective and cardiovascular effects of cocaethylene in humans. Psychophar-macology 113:144–147, 1993.

    CAS  Google Scholar 

  35. Perez-Reyes M, Jeffcoat R, Myers M, et al: Comparison in humans of the potency and pharmacokinetics of intravenously injected cocaethylene and cocaine. Psychopharmacology 116:428–432, 1994.

    Article  PubMed  CAS  Google Scholar 

  36. McCane EF, Price LH, Kosten TR, Jatlow PI: Cocaethylene: Pharmacology, physiology and behavioral effects in humans. J Pharmacol Exp Ther 274:215–223, 1995.

    Google Scholar 

  37. Bailey DN: Plasma cocaethylene concentrations in patients treated in the emergency room or trauma unit. Am J Clin Pathol 99:123–127, 1993.

    PubMed  CAS  Google Scholar 

  38. Bailey DN, Bessler JB, Sawrey BA: Cocaine-and cocaethylene-creatinine clearance ratios in humans. J Anal Toxicol 21:41–43, 1997.

    PubMed  CAS  Google Scholar 

  39. De la Torre R, Ortuño J, Gonzalez ML, et al: Determination of cocaine and its metabolites in human urine by gas chromatography/mass spectrometry after simultaneous use of cocaine and alcohol. JPharm Biomed Anal 13:305–312, 1995.

    Google Scholar 

  40. Fish F, Wilson DC: Excretion of cocaine and its metabolites in man. J Pharm Pharmacol 21:135S–138S, 1969.

    PubMed  Google Scholar 

  41. Ambre JJ, Fischman M, Ruo TI: Urinary excretion of ecgonine methyl ester, a major metabolite of cocaine in humans. J Anal Toxicol 8:23–25, 1984.

    PubMed  CAS  Google Scholar 

  42. Jatlow P, Barash PG, Van Dyke C, et al: Cocaine and succinylcholine sensitivity: A new caution. Anesth Analg 58:235–238, 1979.

    PubMed  CAS  Google Scholar 

  43. Stewart DJ, Inaba T, Tang BK, Kalow W: Hydrolysis of cocaine in human plasma cholinesterase. Life Sci 20:1557–1564, 1977.

    Article  PubMed  CAS  Google Scholar 

  44. Stewart DJ, Inaba T, Lucassen M, Kalow W: Cocaine metabolism: Cocaine and norcocaine hydrolysis by liver and serum esterases. Clin Pharmacol Ther 25:464–468, 1979.

    PubMed  CAS  Google Scholar 

  45. Brogan III WC, Kemp PM, Bost RO, et al: Collection and handling of clinical blood samples to assure the accurate measurement of cocaine concentration. J Anal Toxicol 16:152–154, 1992.

    PubMed  CAS  Google Scholar 

  46. Isenschmid DS, Fischman MW, Foltin RW, Caplan YH: Concentration of cocaine and metabolites in plasma of humans following intravenous administration and smoking of cocaine. J Anal Toxicol 16:311–314, 1992.

    PubMed  CAS  Google Scholar 

  47. Cone EJ: Pharmacokinetics and pharmacodynamics of cocaine. J Anal Toxicol 19:459–478, 1995.

    PubMed  CAS  Google Scholar 

  48. Le Duc B, Sinclair PR, Shuster L, et al: Norcocaine and N-hydroxynorcocaine formation in human liver microsomes: Role of cytochrome P450 3A4. Pharmacology 46:294–300, 1993.

    Google Scholar 

  49. Pellinen P, Honkakoski P, Stenbäck F, et al: Cocaine N-demethylation and the metabolismrelated hepatotoxicity can be prevented by cytochrome P450 3A inhibitors. Eur J Pharmacol 270:35–43, 1994.

    PubMed  CAS  Google Scholar 

  50. Kloss MW, Rosen GM, Rauckman EJ: N-Demethylation of cocaine to norcocaine. Evidence for participation by cytochrome P450 and FAD-containing monooxygenase. Mol Pharmacol 23:482–485, 1983.

    PubMed  CAS  Google Scholar 

  51. Shuster D, Casey E, Welankiwar SS: Metabolism of cocaine and norcocaine to N-hydroxynor-cocaine. Biochem Pharmacol 32:03045–3051, 1983.

    Article  CAS  Google Scholar 

  52. Kloss M, Rosen G, Rauckman E: Cocaine-mediated hepatotoxicity: A critical review. Biochem Pharmacol 33:169–173, 1984.

    Article  PubMed  CAS  Google Scholar 

  53. Roberts SM, Harbison RD, James RC: Human microsomal N-oxidative metabolism of cocaine. Drug Metab Dispos 19:1046–1051, 1991.

    PubMed  CAS  Google Scholar 

  54. Thompson ML, Shuster L, Shaw K: Cocaine-induced hepatic necrosis in mice—The role of cocaine metabolism. Biochem Pharmacol 28:2389–2395, 1979.

    Article  PubMed  CAS  Google Scholar 

  55. Freeman RW, Harbison RD: Hepatic periportal necrosis induced by chronic administration of cocaine. Biochem Pharmacol 30:777–783, 1981.

    Article  PubMed  CAS  Google Scholar 

  56. Evans MA: Role of protein binding in cocaine-induced hepatic necrosis. J Pharmacol Exp Ther 224:73–79, 1983.

    PubMed  CAS  Google Scholar 

  57. Perino LLE, Warren GH, Levine JS: Cocaine-induced hepatotoxicity in humans. Gastroenterology 93:176–180, 1987.

    PubMed  CAS  Google Scholar 

  58. Wanless IR, Dore S, Gopinath N, et al: Histopathology of cocaine hepatotoxicity. Report of four patients. Gastroenterology 98:497–501, 1990.

    PubMed  CAS  Google Scholar 

  59. Heith AM, Morse CR, Tsujita T, et al: Fatty acid ethyl ester synthase catalyzes the esterification of ethanol to cocaine. Biochem Biophys Res Commun 208:549–554, 1995.

    Article  PubMed  CAS  Google Scholar 

  60. Jacob P III, Lewis E, Jones R, Elias-Baker B: A pyrolysis product, anhydroecgonine methyl ester: methylecgonidine, is in the urine of cocaine smokers. J Anal Toxicol 14:353–357, 1990.

    PubMed  CAS  Google Scholar 

  61. Cone EJ, Hillsgrove MJ, Darwin WD: Simultaneous measurement of cocaine, cocaethylene, their metabolites and &#201C;crack&#201D; pyrolysis products by gas chromatography-mass spectrometry. Clin Chem 40:1299–1305, 1994.

    PubMed  CAS  Google Scholar 

  62. González ML, Carnicero M, de la Torre R, et al: Influence of the injection technique on the thermal degradation of cocaine and its metabolites in gas chromatography. J Chromatogr Biomed Appl 664:317–327, 1995.

    Google Scholar 

  63. Ponsoda X, Jover R, Castell JV, Gómez-Lechón J: Potentiation of cocaine hepatotoxicity in human hepatocytes by ethanol. Toxic in Vitro 6:155–158, 1992.

    CAS  Google Scholar 

  64. Smith AC, Freeman RW, Harbison RD Ethanol enhancement of cocaine-induced hepatotoxicity. Biochem Pharmacol 30:453–458, 1981.

    PubMed  CAS  Google Scholar 

  65. Hearn WL, Rose S, Wagner J: Cocaethylene is more potent than cocaine in mediating lethality. Pharmacol Biochem Behav 39:531–533, 1991.

    Article  PubMed  CAS  Google Scholar 

  66. Worner TM: Hepatotoxicity is not inreased in alcoholics with positive urinary cocaine metabolites. Drug Alcohol Depend 35:191–195, 1994.

    PubMed  CAS  Google Scholar 

  67. Pellinen P, Stenbäck F, Kojo A, et al: Regenerative changes in hepatic morphology and enhanced expression of CYP2B10 and CYP3A during daily administration of cocaine. Hepatology 23:515–523, 1996.

    PubMed  CAS  Google Scholar 

  68. Chiappelli F, Kung MA, Villanueva P, et al: Immunotoxicity of cocaethylene. Immunopharmacol Immunotoxicol 17:399–417, 1995.

    PubMed  CAS  Google Scholar 

  69. Pirozhkov SV, Watson RR, Chen GJ: Ethanol immunosuppression induced by cocaine. Alcohol Alcohol Suppl 2:75–82, 1993.

    PubMed  CAS  Google Scholar 

  70. Jeong TC, Jordan SD, Matulka RA, et al: Immunosuppression induced by acute exposure to cocaine is dependent on metabolism by cytochrome P-450. J Pharmacol Exp Ther 276:1257–1265, 1996.

    PubMed  CAS  Google Scholar 

  71. Henning RJ, Wilson LD: Cocaethylene is as cardiotoxic as cocaine but is less toxic than cocaine plus ethanol. Life Sci 59:615–627, 1996.

    Article  PubMed  CAS  Google Scholar 

  72. Wilson LD, Henning RJ, Sutheimer C, et al: Cocaethylene causes dose-dependent reductions in cardiac function in anesthetized dogs. J Cardiovasc Pharmacol 26:965–973, 1995

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Kluwer Academic Publishers

About this chapter

Cite this chapter

Cami, J., Farré, M., González, M.L., Segura, J., de la Torre, R. (1998). Cocaine Metabolism in Humans after Use of Alcohol Clinical and Research Implications. In: Recent Developments in Alcoholism. Recent Developments in Alcoholism, vol 14. Springer, Boston, MA. https://doi.org/10.1007/0-306-47148-5_22

Download citation

  • DOI: https://doi.org/10.1007/0-306-47148-5_22

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-306-45747-0

  • Online ISBN: 978-0-306-47148-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics