Skip to main content

Part of the book series: Solid-State Science and Technology Library ((SSST,volume 6))

  • 125 Accesses

Abstract

Soliton collisions in a WDM transmission system produce power and phase correlations among the interacting channels. The quantum limits of the cross-phase-modulation-induced coupling of solitons were intensively investigated in theory and in experiment, however, only in terms of number-phase correlations. A recent multi-mode analysis of propagating solitons and of the soliton collisions shows intra- and inter-pulse photon-number correlations. This analysis provides new insights into the quantum structure of solitons, into the back-action evading detection of the photon number and into a mechanism of intensity modulation cross-talk in WDM transmission systems in the presence of spectral filters.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Drummond, P. D., Shelby, R. M., Priberg, S. R. and Yamamoto, Y.: Quantum solitons in optical fibres, Nature, 365, (1993), pp.307–313.

    Article  Google Scholar 

  2. Friberg, S. R.: Quantum Mechanical Aspects of Soliton Propagation: Recent Theoretical and Experimental Studies, in Special Section on Nonlinear Theory and its Applications, IEICE Trans. Electron., (1996).

    Google Scholar 

  3. Sizmann, A. and Leuchs, G.: The optical Kerr effect and quantum optics in fibers, in Progress in Optics, XXXIX, Wolf, E. (Ed.), Elsevier, (1999), pp.373–469.

    Google Scholar 

  4. Corney, J. F., Drummond, P. D. and Liebman, A.: Quantum noise limits to terabaud communications, Opt. Comm., 140, (1997), pp.211–215.

    Google Scholar 

  5. Smith, N. J. and Doran, N. J.: Picosecond soliton transmission using concatenated nonlinear optical loop-mirror intensity filters, J. Opt. Soc. Am., B12, (1995), pp.1117–1125.

    Google Scholar 

  6. Furusawa, A., Sorensen, J. L., Braunstein, S. L., Fuchs, C. A., Kimble, H. J. and Polzig, E. S.: Science, 282, (1998), pp.706–709.

    Article  Google Scholar 

  7. Leuchs, G., Ralph, T. C., Silberhorn, C. and Korolkova, N.: Scheme for the generation of entangled solitons for quantum communication, J. Mod. Optics, 46, (1999), pp.1927–1939.

    Google Scholar 

  8. Haus, H. A., Watanabe, K. and Yamamoto, Y.: Quantum-nondemolition measurement of optical solitons, J. Opt. Soc. Am., B6, (1989), pp.1138–1148.

    Google Scholar 

  9. Sakai, Y., Hawkins, R. J. and Friberg, S. R.: Soliton-collision interferometer for the quantum nondemolition measurement of photon number: numerical results, Opt. Lett., 15, (1990), pp.239–241.

    Google Scholar 

  10. Friberg, S. R., Machida, S. and Yamamoto, Y.: Quantum-Nondemoliton Measurement of the Photon Number of an Optical Soliton, Phys. Rev. Lett., 69, (1992), pp.3165–3168.

    Article  Google Scholar 

  11. Friberg, S. R., Machida, S., Imoto, N., Watanabe, K. and Mukai, T.: Quantum Nondemolition Detection via Successive Back-Action-Evasion Measurements: A Step Towards the Experimental Demonstration of Quantum State Reduction, in Quantum Coherence and Decoherence, Fujikawa, K. and Ono, Y. A. (Eds.); Elsevier, (1996), pp.85–88.

    Google Scholar 

  12. Friberg, S. R.: Demonstration of colliding-soliton all-optical switching, Appl. Phys. Lett., 63, (1993), pp.429–431.

    Article  Google Scholar 

  13. Moores, J. D., Bergman, K., Haus, H. A. and Ippen, E. P.: Demonstration of optical switching by means of solitary wave collisions on a fiber ring reflector, Opt. Lett., 16, (1991), pp.138–140

    Google Scholar 

  14. Friberg, S. R., Machida, S. and Levanon, A.: CLEO/Pacific Rim’95, Invited Paper TuF2, (1995).

    Google Scholar 

  15. Friberg, S. R., Machida, S., Werner, M. J., Levanon, A. and Mukai, T.: Observation of Optical Soliton Photon-Number Squeezing, Phys. Rev. Lett., 77, (1996), pp.3775–3778.

    Article  Google Scholar 

  16. Spälter, S., Burk, M., Strößner, U., Bohm, M., Sizmann, A. and Leuchs, G.: Photon number squeezing of spectrally filtered sub-picosecond optical solitons, Europhys. Lett., 38, (1997), pp.335–340.

    Google Scholar 

  17. Spälter, S., Burk, M., Strößner, U., Sizmann, A. and Leuchs, G.: Propagation of quantum properties of sub-picosecond solitons in a fiber, Opt. Expr., 2, (1998), pp.77–83.

    Google Scholar 

  18. König, F., Spälter, S., Shumay, I., Sizmann, A., Fauster, T. and Leuchs, G.: Fibreoptic photon-number squeezing in the normal group-velocity dispersion regime, J. Mod. Opt., 45, (1998), pp.2425–2431.

    Google Scholar 

  19. Werner, M. J.: Quantum statistics of fundamental and higher-order coherent quantum solitons in Raman-active waveguides, Phys. Rev., A54, (1996), pp.2567–2570.

    Google Scholar 

  20. Werner, M. J. and Friberg, S. R.: Phase transitions and the internal noise structure of nonlinear Schrödingerequation solitons, Phys. Rev. Lett., 79, (1997), pp.4143–4146.

    Google Scholar 

  21. Spälter, S., Korolkova, N., König, F., Sizmann, A. and Leuchs, G.: Observation of multimode quantum correlations in fiber optical solitons, Phys. Rev. Lett., 81, (1998), pp.786–789.

    Google Scholar 

  22. Levandovsky, D., Vasilyev, M. V. and Kumar, P.: Perturbation theory of quantum solitons: continuum evolution and optimum squeezing by spectral filtering, Opt. Lett., 24, (1999), pp.43–45.

    Google Scholar 

  23. Kennedy, T, A. B.: Quantum theory of cross-phase-modulational instability: Twinbeam correlations in a χ(3) process, Phys. Rev., A44, (1991), pp.2113–2123.

    Google Scholar 

  24. Haus, H. A. and Lai, Y.: J. Opt. Soc. Am., B7, (1990), pp.386–392.

    Google Scholar 

  25. Zielonka, M. A.: Photonenzahlkorrelationen im Spektrum van Quantensolitonen, Diplomarbeit, Physikalisches Institut der Universität Erlangen-Nürnberg, (1999).

    Google Scholar 

  26. Zielouka, M. A., König, F. and Sizmann, A.: Transient quantum correlations of interacting solitons, in preparation.

    Google Scholar 

  27. Lucek, J. K. and Smith, K.: All-optical signal regenerator, Opt. Lett., 18, (1993), pp.22–24.

    Article  Google Scholar 

  28. Sartorius, B., Bornholdt, C., Brox, O., Ehrke, H. J., Hoffrnann, D., Ludwig, R. and Möhrle, M.:All-optical clock recovery module based on self-pulsating DFB laser, Electron. Lett., 34, (1998), pp.1664–1665.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Kluwer Academic Publishers

About this chapter

Cite this chapter

Sizmann, A., Köing, F., Zielonka, M., Steidl, R., Rechtenwald, T. (2000). Quantum Correlations of Colliding Soltions. In: Hasegawa, A. (eds) Massive WDM and TDM Soliton Transmission Systems. Solid-State Science and Technology Library, vol 6. Springer, Dordrecht. https://doi.org/10.1007/0-306-47125-6_18

Download citation

  • DOI: https://doi.org/10.1007/0-306-47125-6_18

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-0-7923-6517-4

  • Online ISBN: 978-0-306-47125-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics