Skip to main content

Network Stiffening and Chemical Ordering in Chalcogenide Glasses: Compositional Trends of Tg in Relation to Structural Information From Solid and Liquid State NMR

  • Chapter
Phase Transitions and Self-Organization in Electronic and Molecular Networks

Part of the book series: Fundamental Materials Research ((FMRE))

  • 283 Accesses

Conclusions

In summary the results of the present study illustrate the utility of solid- and molten-state NMR spectroscopy to provide valuable information on short- and medium-range ordering effects in non-oxide chalcogenide glasses. P-Se glasses with their efficient competition between homo- and heteropolar bond formation are the most ideal model systems for mean-field theory. Accordingly a dramatic change in dTg/d<r> is observable at the percolation threshold <r>=2.40. In contrast, As-Se and Ge-Se systems display a pronounced preference for heteropolar bond formation, resulting in chemical threshold effects that are superimposed upon the effects of physical percolation. These chemical threshold effects produce Tg maxima at compositions corresponding to R=1, where heteropolar bond formation is maximized. In ternary Ge-Se-X systems (X=P,As,Sb) these chemical threshold effects disappear because the formation of homopolar bonds is controlled by a strong secondary hierarchy. Over wide compositional regions of Se-deficient glasses this hierarchy serves to minimize the formation of Ge-Ge bonds and can be held responsible for the observation of universal Tg vs. <r> dependences. Based on these results we predict that physical threshold behavior will in general be observable not only in those glass systems having no bonding preferences, but also in those ternary glass systems in which chemical ordering is observed, but where there is a clear secondary hierarchy of heteropolar bond formation. The most striking example is the Ge-P-Se glass system; other examples can be envisioned for tellurium-based chalcogenide glass systems Ge-X-Te. In contrast, no such secondary hierarchy is expected for sulfide-based glasses (such as Ge-X-S), where we envision heteropolar Ge-S and X-S bonding to dominate the structure to such an extent that no secondary hierarchy effects are expected. The experimental varification of these ideas is currently under investigation in our laboratories.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Nishii, J., Morimoto, S:, Inagawa, I., Lizuka, R., Yamashita, T., Yamagashi, T. (1992) Recent advances and trends in chalcogenide glass fiber technology: a review, J. Noncryst. Solids 140, 199–208.

    Article  CAS  Google Scholar 

  2. Simons, D. R., Faber, A. J., Waal, H. (1995) GeSx glass for Pr3+ doped fiber amplifiers at 1.3 μmxx J. Noncryst. Solids 185, 283–288.

    Article  CAS  Google Scholar 

  3. Aitken, B. G., Quimby, R. S. (1997) Rare-earth doped multicomponent Ge-based sulphide glasses, J. Noncryst. Solids 213/214, 281–287.

    Article  Google Scholar 

  4. Turnbull, D.A., Bishop, S.G. (1998) Rare-earth dopants as probes of localized states in chalcogenide glasses, J. Noncryst. Solids 223, 105–113.

    Article  CAS  Google Scholar 

  5. Hilton, A. R., Jones, C. E.,. Brau, M (1966) Non-oxide IVA-VA chalcogenide glasses. Part I. Glass-forming regions and variations in physical properties, Phys. Chem. Glasses 7, 105–112.

    CAS  Google Scholar 

  6. Borisova, Z. U. Glassy Semiconductors, Plenum Press New York, 1981.

    Google Scholar 

  7. Feltz, A. Amorphous Inorganic Materials and Glasses, Verlag Chemie Weinheim 1993.

    Google Scholar 

  8. Zallen, R The Physics of Amorphous Solids, John Wiley New York 1986.

    Google Scholar 

  9. Phillips, J. C. (1979) Topology of covalent non-crystalline solids, 1. Short-rangeorder in chalcogenide alloys and a-Si(Ge), J. Noncryst. Solids 34, 153–181.

    Article  CAS  Google Scholar 

  10. Phillips, J. C. (1981) Topology of covalent non-crystalline solids. 2. Medium-range order in chalcogenide alloys and a-Si(Ge), J. Noncryst. Solids 43, 37–77.

    Article  CAS  Google Scholar 

  11. Thorpe, M. F. (1983) Continuous deformations in random networks, J. Noncryst. Solids 57, 355–370.

    Article  CAS  Google Scholar 

  12. Thorpe, M. F. (1985) Rigidity percolation in glassy structures, J. Noncryst. Solids 76, 109–116.

    Article  CAS  Google Scholar 

  13. Thorpe, M. F. (1995) Dynamics of glassy systems, bulk and surface floppy modes, J. Noncryst. Solids 182, 135–142.

    Article  CAS  Google Scholar 

  14. Boolchand, P., Thorpe, M. F. (1994) Glass-forming tendency, percolation of rigidity, and onefold coordinated atoms in covalent networks, Phys. Rev. B 50, 10366–10368.

    CAS  Google Scholar 

  15. Phillips, J. C., Thorpe, M. F. (1985) Constraint theory, vector percolation and glass formation, Solid State Commun. 53, 699–702.

    Article  CAS  Google Scholar 

  16. He, H., Thorpe, M. F. (1985) Elastic properties of glasses, Phys. Rev. Lett. 54, 2107–2110.

    Article  CAS  Google Scholar 

  17. Tatsumisago, M., Halfpap, B. L., Green, J. L., Lindsay, S. M., Angell, C.A., (1990) Fragility of Ge-As-Se glass-forming liquids in relation to rigidity percolation, and the Kauzmann paradox, Phys. Rev. Lett., 64, 1549–1552.

    Article  CAS  Google Scholar 

  18. Sreeram, A.N., Varshneya, A.K. and Swiler, D.R. (1991) Molar volume and elastic properties of multicomponent chalcogenide glasses, J. Non-Cryst. Solids 128, 294–309.

    Article  CAS  Google Scholar 

  19. Giridhar, A., Mahadevan, S., J. (1992) The Tg versus Z dependence of glasses of the Ge-In-Se system, J. Noncryst. Solids, 151, 245–252.

    Article  CAS  Google Scholar 

  20. Mahadevan, S., Giridhar, A., Singh, A. K. (1994) Volumetric effect of topology in chalcogenide glass systems, J. Noncryst. Solids, 169, 133–142.

    Article  CAS  Google Scholar 

  21. Senapati, U., Varshneya, A. K., (1995) Configurational arrangements in chalcogenide glasses: a new perspective on Phillips constraint theory, J. Noncryst. Solids, 185, 289–296.

    Article  CAS  Google Scholar 

  22. Wang, Zh., Chen, Q, (1995) Structure and some physical properties in relation to average coordination number, <r>, in TeX and TeXAs glasses, J. Noncryst. Solids, 184, 177–183.

    CAS  Google Scholar 

  23. Mahadevan, S., Giridhar, A., (1992) Floppy to rigid transition and chemical ordering in Ge-Sb(As)-Se glasses, J. Noncryst. Solids 143, 52–58.

    Article  CAS  Google Scholar 

  24. Tichy, L., Ticha, H., (1995) Covalent bond approach to the glass transition temperature of chalcogenide glasses, J. Noncryst. Solids, 189, 141–146.

    CAS  Google Scholar 

  25. Tichy, L., Ticha, H. (1999) Is the chemical threshold in certain chalcogenide glasses responsible for the threshold at the mean coordination number of approximately 2.7?, Phil. Mag., 79, 373–380.

    CAS  Google Scholar 

  26. Tichy, L., Ticha, H., (1994) On the chemical threshold in chalcogenide glasses, Mater. Lett., 21, 313–319.

    CAS  Google Scholar 

  27. Mutolo, P, Witschas, M., Regelsky, G., Schmedt auf der Guenne, J., Eckert H. (1999), Nuclear magnetic resonance (NMR) studies of phosphorus-based chalcogenide glasses: an overview, J. Noncryst. Solids 256–257, 63–72, and references therein.

    Google Scholar 

  28. Maxwell, R.. Eckert, H. (1994) Chemical equilibria in glass-forming melts: high-temperature 3IP and 77Se NMR of the system phosphorus-selenium, J. Am. Chem. Soc. 116 (1994), 682–689.

    Article  CAS  Google Scholar 

  29. Rosenhahn, C., Hayes, S., Rosenhahn, B., Eckert, H. (2001), Structural organization of arsenic selenide liquids: new results from liquid state NMR, J. Noncryst. Solids, in press.

    Google Scholar 

  30. Heyder, F., Linke, D. (1973) Zur Glasbildung in den Systemen Phosphor-Schwefel und Phosphor-Selen, Z. Chem. 13, 480–481

    CAS  Google Scholar 

  31. Lyda, C.M., Leone, J.M., Bankert, M.A., Xia, Y.,, H. (1994) Structural studies of phosphorus-sulfur-tellurium glasses by 31P MAS-NMR and vibrational spectroscopies, Chem. Mater. 6, 1934–1939.

    Article  CAS  Google Scholar 

  32. Lathrop, D., Eckert, H. (1989) Chemical disorder in non-oxide chalcogenide glasses. Site speciation in the system phosphorus-selenium by magic angle spinning NMR at very high spinning speeds, J. Phys. Chem. 93, 7895–7902.

    Article  CAS  Google Scholar 

  33. Lathrop, D., Eckert, H. (1991), Quantitative determination of structural units in phosphorus-selenium glasses by 31P dipolar and MAS spectroscopy, Phys. Rev. B 43, 7279–7287.

    Article  CAS  Google Scholar 

  34. Lathrop, D., Eckert, H.(1990), Dipolar NMR spectroscopy of non-oxidic glasses. Structural chacterization of the system phosphorus-selenium by 31P-77Se spin echo double resonance NMR, J. Am. Chem. Soc. 112, 9017–9019

    Article  CAS  Google Scholar 

  35. Maxwell, R., Lathrop, D., Eckert, H. (1995) Medium-range order in phosphorus-selenium glasses. Constraints from 3IP and 77Se NMR spectroscopy, J. Noncrysl. Solids 188, 75–86.

    Google Scholar 

  36. Price, D.L., Misawa, M., Susman, S., Morrison, T.I., Shenoy, G. K., M. Grimsditch, M., (1984), The structure of phosphorus-selenium glasses. 1. Concentration dependence of the short-and intermediate-range order. J. Noncryst. Solids 66, 443–465.

    Article  CAS  Google Scholar 

  37. Bishop, S.G., Taylor, P.C. (1972) Atomic reorientation rates in liquid chalcogenide glasses: NMR in Se and As2Se3, Solid State Commun. 11, 1323–1326

    Article  CAS  Google Scholar 

  38. Brown, D., Moore, D.S., Seymour, E.F.W. (1972), NMR of 77Se and 125Te in liquid and amorphous semiconductors, J. Noncryst. Solids 8–10, 256–261.

    Google Scholar 

  39. Saleh, Z. M., Williams, G. A., Taylor, P.C. (1989) Nuclear quadrupole resonance in the glassy Cu-As-S and Cu-As-Se systems, Phys. Rev. B 40 10557–10563

    Article  CAS  Google Scholar 

  40. Feng, X, W., Bresser, W. J., Boolchand, P. (1997) Direct evidence for stiffness threshold in chalcogenide glasses, Phys. Rev. Lett. 78, 4422–4425.

    Article  CAS  Google Scholar 

  41. Witschas, M., Regelsky, G., Eckert, H. (1997) NMR studies of phosphorus in Si-P-Te and Ge-P-Te glasses, J. Noncryst. Solids 215, 226–235.

    Article  CAS  Google Scholar 

  42. Brunklaus, G. (1999), 31P-NMR spektroskopische Untersuchungen zur Struktur der Gläser des ternären Systems Ge-P-S, Diploma Thesis Universität Münster.

    Google Scholar 

  43. Lyda, C., Tepe, T., Tullius, M., Lathrop, D., Eckert, H., (1994) Chemical bond distribution in chalcogenide glasses. A 31P MAS and spin-echo NMR study of glasses in the phosphorus-germanium-selenium system, J. Noncryst. Solids, 171, 271–280.

    Article  CAS  Google Scholar 

  44. Müllmann, R., Mosel, B.D., Eckert, (1999) H. Physical and chemical threshold behavior in chalcogenide networks: 119Sn Mössbauer spectroscopy of Ge(Sn)-As-Se glasses, Phys. Chem. Chem. Phys. 1, 2543–2550.

    Google Scholar 

  45. Boolchand, P., Stevens, M., (1984) Evidence for isoelectronic Sn for Ge substitution in crystalline and glassy GeSe2, Phys. Rev. B, 29, 1–7.

    Article  CAS  Google Scholar 

  46. Rosenhahn, C., Müllmann, R., Mosel, B.D., Eckert, H. Hierarchy of homopolar bond formation in ternary chalcogenide glasses: 119Sn Mössbauer spectroscopic results in Ge(Sn)-As-Se and Ge(Sn)-Sb-Se glasses; to be published.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Kluwer Academic Publishers

About this chapter

Cite this chapter

Rosenhahn, C., Hayes, S., Brunklaus, G., Eckert, H. (2002). Network Stiffening and Chemical Ordering in Chalcogenide Glasses: Compositional Trends of Tg in Relation to Structural Information From Solid and Liquid State NMR. In: Thorpe, M.F., Phillips, J.C. (eds) Phase Transitions and Self-Organization in Electronic and Molecular Networks. Fundamental Materials Research. Springer, Boston, MA. https://doi.org/10.1007/0-306-47113-2_9

Download citation

  • DOI: https://doi.org/10.1007/0-306-47113-2_9

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-306-46568-0

  • Online ISBN: 978-0-306-47113-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics