Skip to main content

Part of the book series: Fundamental Materials Research ((FMRE))

  • 294 Accesses

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Jackle, J. (1986) Models of the glass transition Rep. Prog. Phys., 49, 171–231

    Article  Google Scholar 

  2. Ediger, M.D., Angell, C.A. & Nagel, S.R. (1996) Supercooled liquids and glasses J. Phys. Chem. 100, 13200–13212

    Article  CAS  Google Scholar 

  3. Angell, C. A. (1991) Relaxation in liquids, polymers and plastic crystals — strong/fragile patterns and problems, Journ. of Non-Cryst. Solids, 131–133, 13 (1991)

    Google Scholar 

  4. Angell, C. A. (1997) Entropy and fragility in supercooled liquids Journ. of Res. of the Nat. Inst. of Stand. and Techn 102 171–185

    CAS  Google Scholar 

  5. Kirkpatrick, T. R, Thirumalai, D. & Wolynes, P. G. (1989) Scaling concepts for the dynamics of viscous-liquids near an ideal glassy state. Phys. Rev. A 40, 1045–1054

    CAS  Google Scholar 

  6. Götze, W., and Sjögren, L. (1992) Relaxation processes in supercooled liquids, Reports on Progress in Physics, 55, 241–295

    Google Scholar 

  7. Blackburn, F. R., Wang, C.-Y. & Ediger, M. D. (1996) Translational and rotational motion of probes in supercooled 1,3,5-tris(naphthyl)benzene. J. Phys. Chem. 100, 18249–18257

    Article  CAS  Google Scholar 

  8. Sillescu, H. (1999) Heterogeneity at the glass transition: a review. J. Non-Cryst. Solids 243, 81–108

    Article  CAS  Google Scholar 

  9. Kivelson, D., Kivelson, S. A., Zhao, X., Nussinov, Z. & Tarjus, G. (1995) A thermodynamic theory of supercooled liquids. Physica A 219, 27–38

    Article  CAS  Google Scholar 

  10. Fischer, E. W. (1993) Light scattering and dielectric studies on glass forming liquids. Physica A 201, 183–206

    Article  CAS  Google Scholar 

  11. Palmer, R. G. (1982) Broken ergodicity Adv. in Phys. 31, 669–735

    Google Scholar 

  12. Ma, S.-K., (1996) Statistical mechanics, World Scientific, Singapore (1985)

    Google Scholar 

  13. Lichtenberg, A. J. and Lieberman, M. A. (1983) Regular and Stochastic Motion, Springer Verlag, NY

    Google Scholar 

  14. Mountain, R. D. and Thirumalai, D. (1989) Measures of effective ergodic convergence in liquids Journ. of Phys. Chem, 93, 6975

    CAS  Google Scholar 

  15. Krylov, N. S. Works on the Foundations of Statistical Physics, Princeton Series in Physics, Princeton 1979; see also Sinai, Ya. G. Development of Krylov’s Ideas, pp. 239–281 of the same volume.

    Google Scholar 

  16. Sinai, Ya. G. (1966) Izv. Akad. Nauk SSSR. Mt 30, 15–32 (in Russian)

    Google Scholar 

  17. Dzugutov, M., (1996) Dynamical diagnostics of ergodicity breaking in supercooled liquids J. Phys. Cond. Matter, 11, 253–259

    Google Scholar 

  18. Dzugutov, M., (1996) A universal scaling law for atomic diffusion in condensed matter Nature, 381, 137–139

    Article  CAS  Google Scholar 

  19. J. P. Boon and S. Yip, (1980) Molecular Hydrodynamics, McGraw-Hill, New York

    Google Scholar 

  20. Cohen, E. D. G. (1993) Fifty years of kinetic theory Physica A, 194, 229–257

    Article  CAS  Google Scholar 

  21. Stillinger, F. H. & Weber, T. A. (1984) Packing structures and transitions in liquids and solids. Science 225, 983–989

    CAS  Google Scholar 

  22. Hansen, J. P. and McDonald, I. (1976) Theory of Simple Liquids, Academic Press, London

    Google Scholar 

  23. S. Chapman and T. G. Cowling, (1939) The mathematical theory of non-uniform gases, Cambridge University Press

    Google Scholar 

  24. Mountain, R. D. & Raveche, H., (1971) Entropy and correlation functions in open systems. II Two-and three-body correlations Journ. Chem. Phys. 35, 2250–2255

    Google Scholar 

  25. Pesin, Ja. B. (1976) Lyapunov characteristic exponents and ergodic properties of smooth dynamical systems with an invariant measure Sov. Math. Dokl., 17, 196–203 (in Russian)

    Google Scholar 

  26. Dzugutov, M., Aurell, E., and Vulpiani, A., (1998) A universal relation between the Kolmogorov-Sinai entropy and the thermodynamic entropy in simple liquids Phys. Rev. Lett. 81, 1762

    Article  CAS  Google Scholar 

  27. Adam, G. and Gibbs, J.H., (1965) On the temperature dependence of cooperative relaxation properties in glass-forming liquids Journ. Chem. Phys. 43, 139–146

    CAS  Google Scholar 

  28. Rosenfeld, Ya., (1977) Relation between the transport coefficients and the internal entropy of simple systems Phys. Rev. A, 15, 2545–2549

    Google Scholar 

  29. Di Marzio, E. A. and Yang, A. J. M. (1997) Configurational entropy approach to kinetics of glasses, Journ. of Res. of the Nat. Inst. of Stand. and Techn 102, 135–157

    Google Scholar 

  30. Sastry, S., Debenedetti, P., and Stillinger F. H. (1998) Signatures of distinct dynamical regimes in the energy landscape of a glass forming liquid Nature, 393, 554–557; Angell, C. A. Liquid landscape ibid., 521–524

    Article  CAS  Google Scholar 

  31. Eldridge, M. D., Madden, P. A., and Frenkel, D. (1993) Entropy driven formation of a superlattice in a hard sphere binary mixture Nature, 365, 35

    Article  CAS  Google Scholar 

  32. Dzugutov, M. (1992) Glass formation in a simple monatomic liquid with icosahedral inherent local order. Phys. Rev. A 46, R2984–R2987

    Article  CAS  Google Scholar 

  33. Dzugutov, M. (1994) Hopping diffusion as a mechanism of relaxation stretching in a stable simple monatomic liquid. Europhys. Lett. 26, 533–538

    CAS  Google Scholar 

  34. Donati, C., Douglas, J. F., Kob, W., Plimpton, S.J., Poole, P.H. & Glotzer, S.C. (1998) Stringlike cooperative motion in a supercooled liquid. Phys. Rev. Lett. 80, 2338–2341

    Article  CAS  Google Scholar 

  35. Phillips, J.C., and Thorpe, M.F., (1985) Constraints theory, vector percolation and glass formation, Dynamics of glass-forming materials confined in thin films Sol. St. Comm. 53, 699–702

    Article  CAS  Google Scholar 

  36. Jérôme, B. (1999) Dynamics of glass-forming materials confined in thin films Journ. Phys. Cond. Matter 11, 189–199

    Google Scholar 

  37. Humphrey, W., Dalke, A., and Schulten, K., (1996) VMD — visual molecular dynamics, Molecular Graphics 14, 33–38

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Kluwer Academic Publishers

About this chapter

Cite this chapter

Dzugutov, M., Simdyankin, S., Zetterling, F. (2002). Non-Ergodic Dynamics in Supercooled Liquids. In: Thorpe, M.F., Phillips, J.C. (eds) Phase Transitions and Self-Organization in Electronic and Molecular Networks. Fundamental Materials Research. Springer, Boston, MA. https://doi.org/10.1007/0-306-47113-2_8

Download citation

  • DOI: https://doi.org/10.1007/0-306-47113-2_8

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-306-46568-0

  • Online ISBN: 978-0-306-47113-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics