Skip to main content

Part of the book series: Fundamental Materials Research ((FMRE))

Conclusions

Raman scattering and T-modulated Differential Scanning Calorimetry measurements on several families of chalcogenide glasses have been performed. Comprehensive results are now available on the GexSe1−x and SixSe1−x binary glass systems, where rigidity is found to onset in two steps; a second-order transition at xc(l)=0.20 in both binaries from a floppy to an unstressed rigid phase, and a first-order transition at xc(2)=0.26 for Ge-Se,=0.27 for Si-Se binary from an unstressed rigid to a stressed rigid phase. The two transitions (xc(1), xc(2)) define the bounds of an intermediate phase that separates the floppy from the stressed rigid phase. The near absence of the non-reversing heat-flow, ΔHnr, constitutes evidence for the stress-free nature of the backbone of glass compositions in the intermediate phase. Light-induced melting of the intermediate phase in micro-Raman measurements on the Ge-Se glass system has also been observed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Pauling, L. (1960) Nature of the Chemical Bond, Cornell University Press, Ithaca, NY pp 85.

    Google Scholar 

  2. Boolchand, P. and Bresser, W. J. (2000) Structural Origin of Broken Chemical Order in GeSe Glass. Phil. Mag B 80, 1757–1772.

    CAS  Google Scholar 

  3. Thorpe, M.F., and Chubynsky, M.V. (2000), Rigidity and Self-Organization of Network Glasses and the Intermediate Phase in M. F. Thorpe (ed.) Properties and Applications of Amorphous Materials, Kluwer Academic Publishers, Dordrecht, (in press).

    Google Scholar 

  4. Thorpe, M.F., Jacobs, D.J., Chubynsky, M.V., Phillips, J.C. (2000) Self-Organization in Network Glasses, J. Non-Cryst Solids 266–269, 859–866.

    Google Scholar 

  5. Phillips, J.C. Mathematical Principles of Intermediate Phases in Disordered Systems, present volume.

    Google Scholar 

  6. Thorpe, M.F., and Chubynsky, M.V. Rigidity and Self-Organization of Network Glasses and the Intermediate Phase, present volume.

    Google Scholar 

  7. Phillips, J.C. (1979) Topology of covalent non-crystalline solids I: Short-range order in chalcogenide alloys, J. Non-Cryst. Solids 34, 153–181.

    Article  CAS  Google Scholar 

  8. Thorpe, M.F. (1983) Continuous deformation in random networks, J. Non-Cryst. Solids 57, 355–370.

    Article  CAS  Google Scholar 

  9. Thorpe, M.F., Jacobs, D.J., Djordjevic, B.R. (2000) The structure and rigidity of network glasses, in P. Boolchand (ed), Insulating and Semiconducting Glasses, World Scientific Press, Singapore, pp. 95–145.

    Google Scholar 

  10. Joós, B., Plischke, M., Vernon, D.C., and Zhou, Z. (1999) Entropic Rigidity in M.F. Thorpe and P.M. Duxbury (eds.), Rigidity Theory and Applications, Kluwer Academic/Plenum Publishers, New York pp 315–328.

    Google Scholar 

  11. Zhang, M. and Boolchand, P. (1994) The central role of broken, bond-bending constraints in promoting glass-formation in the oxides, Science 266, 1355–1357.

    CAS  Google Scholar 

  12. Kerner, R., and Phillips, J.C. (2000) Quantitative Principles of Silicate Glass Chemistry Solid State Comm. (in press).

    Google Scholar 

  13. Boolchand, P., Selvanathan, D. Wang, Y., Georgiev, D.G., and Bresser, W.J. (2000) Onset of Rigidity in steps in Chalcogenide Glasses — The intermediate Phase in M. F. Thorpe (ed). Properties and Applications of Amorphous Materials, Kluwer Academic Publishers, Dortrecht, (in press).

    Google Scholar 

  14. Wang, Y., Boolchand, P. and Micoulaut, M. Glass structure rigidity transitions and the intermediate phase in the Ge-As-Se ternary, Europhys. Lett, (in press).

    Google Scholar 

  15. Lagrange, J. L. (1788) Mecanique Analytique, Paris.

    Google Scholar 

  16. Maxwell, J. C. (1864) On the calculation of the equilibrium and stiffness of frames, Philos, Mag. 27, 294–299.

    Google Scholar 

  17. Boolchand, P., and Thorpe, M.F. (1994) Glass-forming tendency, percolation of rigidity, and one-fold-coordinated atoms in covalent networks, Phys. Rev. B 50, 10366–10368.

    CAS  Google Scholar 

  18. Boolchand, P., Zhang, M. and Goodman, B. (1996) Influence of one-fold-coordinated atoms on mechanical properties of covalent networks, Phys. Rev. B 3, 11488–11494.

    Google Scholar 

  19. Mitkova, M. and Boolchand, P. (1998) Microscopic origin of the glass forming tendency in chalcohalides and constraint theory, J. Non-Cryst. Solids 240, 1–21.

    Article  CAS  Google Scholar 

  20. Boolchand, P., Zhang, M., Goodman, B. (1997) One-fold coordinated atoms, constraint theory and nanoindentation hardness, in M.F. Thorpe and M. Mitkova (eds.) Amorphous Insulators and Semiconductors, Kluwer Academic Publishers, Dortrecht, pp. 339–348.

    Google Scholar 

  21. Feng, X.W., Bresser, W.J. and Boolchand, P. (1997) Direct evidence for stiffness threshold in chalcogenide glasses, Phys. Rev. Lett. 78, 4422–4425.

    Article  CAS  Google Scholar 

  22. Stevens, M., Grothaus, J., Boolchand, P. and Hernandez, J.G. (1983) Universal structural phase-transition in network glasses, Solid State Comm. 47, 199–202.

    CAS  Google Scholar 

  23. Phillips, J.C. (1983) Realization of a Zachariasen glass, Solid Stale Comm. 47, 203–206.

    CAS  Google Scholar 

  24. Boolchand, P. (2000) Vibrational excitation in glasses: Rigidity transition and Lamb-Mössbauer factors, in P. Boolchand (ed.) Insulating and Semiconducting Glasses, World Scientific Press, Singapore, pp. 369–414.

    Google Scholar 

  25. Thorpe, M.F., Jacobs, D.J., Chubynsky, M.V. and Rader, J.A. (1999) Generic rigidity of network glasses in M.F. Thorpe and P. M. Duxbury (eds.) Rigidity Theory and Applications, Kluwer Academic/Plenum Publishers, New York, pp. 239–277.

    Google Scholar 

  26. Zallen, R. (1983) The Physics of Amorphous Solids, John Wiley and Sons, New York, pp. 3.

    Google Scholar 

  27. Modulated DSC™ Compendium (1997) Reprint TA-210, TA Instruments, Inc., New Castle, DE http://www.tainst.com/

  28. Böhmer, R. and Angell, C.A. (1992), Correlations of the non-exponentiality and state dependence of mechanical relaxation with bond-connectivity in Ge-As-Se supercooled liquids. Phys. Rev. B 45, 1091–1094.

    Google Scholar 

  29. Kerner, R. and Micoulaut, M. (1994) A theoretical-model of formation of covalent binary glasses. 1. general setting, J. Non-Cryst. Solids 176, 271–279.

    Article  CAS  Google Scholar 

  30. Micoulaut, M. and Naumis, G.G. (1999) Glass transition temperature variation, cross-linking and structure in network glasses: a stochastic approach, Europhys. Lett. 47, 568–574. Also see contribution of M. Micoulaut — Glass Transition Temperature variation as a probe for network connectivity in this volume.

    Article  CAS  Google Scholar 

  31. Bresser, W.J., Boolchand, P., and Suranyi, P. (1986), Rigidity Percolation and Molecular Clustering in Network glasses. Phys. Rev. Lett. 56, 2493–2497.

    Article  CAS  Google Scholar 

  32. Bresser, W.J., Boolchand, P., Suranyi, P. deNeufville, J.P. (1981), Direct evidence for intrinsically broken chemical ordering in melt-quenched glasses 46, 1689–1692.

    CAS  Google Scholar 

  33. Galeener, F.L. (1990) The structure and vibrational excitations of simple glasses, J. Non-Cryst. Solids 123, 182–190. A symposium was held in 1995 to honor the late Frank L. Galeener’s contributions to glass science. The interested reader may want to look at the proceedings of this symposium published in J. Non-Cryst. Solids 182, 1–212.

    Article  CAS  Google Scholar 

  34. Lucovsky, G. (1979) Chemical effects on the frequencies of Si-H vibrations in amorphous solids, Solid State Commun. 29, 571–576.

    Article  CAS  Google Scholar 

  35. Griffiths, J.E., Espinosa, G.P., Remeika J.P., et al. (1982) Reversible quasi-crystallization in GeSe2 glass, Phys. Rev. B 25, 1272–1286.

    Article  CAS  Google Scholar 

  36. Murase, K. (2000) Vibrational excitations in glasses: Raman scattering, in P. Boolchand (ed.), Insulating and Semiconducting Glasses, World Scientific Press, Inc., Singapore, pp. 415–463.

    Google Scholar 

  37. Selvanathan, D., Bresser, W.J., Boolchand, P., and Goodman, B. (1999) Thermally reversing window and stiffness transitions in chalcogenide glasses, Solid State Commun. 111, 619–624.

    Article  CAS  Google Scholar 

  38. Selvanathan, D., Bresser, W.J., Boolchand, P. (2000) Stiffness transitions in SixSe1−x glasses from Raman scattering and temperature-Modulated Differential Scanning Calorimetry, Phys. Rev. B61, 15061–15076.

    Google Scholar 

  39. Boolchand, P., Feng, X., Bresser W.J. (2000) Rigidity transition in binary Ge-Se Glasses and the intermediate phase, J. Non-Cryst. Solids (submitted).

    Google Scholar 

  40. Wang, Y., Wells, J., Bresser, W.J., Boolchand, P. (2000) Stiffness Transition in a Zachariasen glass: Theory and experiment (unpublished).

    Google Scholar 

  41. Franzblau, D.S., Tersoff, J. (1992) Elastic properties of a network model of glasses, Phys. Rev. Lett. 68: 2172–2175.

    Article  Google Scholar 

  42. He, H., Thorpe, M.F. (1985) Elastic properties of glasses, Phys. Rev. Lett. 54: 2107–2110.

    Article  CAS  Google Scholar 

  43. Josephson, B.D. (1966) Relation between the superfluid density and order parameter for superfluid He near TcPhys. Lett. 21, 608–609.

    CAS  Google Scholar 

  44. Chayes, J.T., Chayes, L., Fisher, D.S., et al. (1986) Fubute-size scaling and correlaton lengths for disordered systems, Phys. Rev. Lett. 57, 2999–3002

    Article  Google Scholar 

  45. Fritzsche, H. (2000) Light induced structural changes in Glasses in P. Boolchand (ed.) Insulating and Semiconducting Glasses, World Scientific Press, Inc., pp. 653–690.

    Google Scholar 

  46. Gump, J., Finkler I., Xia, H., Sooryakumar, R., Bresser, W.J., Boolchand, P. (2000) Direct evidence for photomelting of the Intermediate Phase in Network glasses (submitted to Phys. Rev. Lett.).

    Google Scholar 

  47. Georgiev, D.G., Boolchand, P., Micoulaut, M. Rigidity transitions and molecular structure of AsxSe1−x glasses, Phys. Rev. B (in press).

    Google Scholar 

  48. Georgiev, D.G., Mitkova, M., Boolchand, P., Brunklaus, H., Eckert, H., Micoulaut, M. Molecular Structure, Glass transition temperature variation, agglomeration theory, and network connectivity of binary P-Se glasses, Phys. Rev. B (submitted).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Kluwer Academic Publishers

About this chapter

Cite this chapter

Boolchand, P., Bresser, W., Georgiev, D., Wang, Y., Wells, J. (2002). Evidence for the Intermediate Phase in Chalcogenide Glasses. In: Thorpe, M.F., Phillips, J.C. (eds) Phase Transitions and Self-Organization in Electronic and Molecular Networks. Fundamental Materials Research. Springer, Boston, MA. https://doi.org/10.1007/0-306-47113-2_5

Download citation

  • DOI: https://doi.org/10.1007/0-306-47113-2_5

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-306-46568-0

  • Online ISBN: 978-0-306-47113-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics