Skip to main content

Part of the book series: Fundamental Materials Research ((FMRE))

  • 283 Accesses

Conclusion

We have measured the electrical conductivity of NTD 70Ge:Ga to study the metal-insulator transition, ruling out an ambiguity due to inhomogeneous distribution of impurities. The critical exponent μ≈0.5 in zero magnetic field for doped semiconductors without impurity compensation has been confirmed. On the insulating side of the MIT, while the relation 2V≈ζ predicted by scaling theories [15] holds for 0.9 <N/NC <1, the critical exponents for localization length and impurity dielectric susceptibility change at N/NC ≈0.99. The small amount of doping compensation that is unavoidably present in our samples may be responsible for such a change in the exponents. We have also measured the conductivity in magnetic fields up to B=8 T in order to study the doping-induced MIT (in magnetic fields) and the magnetic-field-induced MIT. For both of the MIT, the critical exponent of the conductivity is 1.1, which is different from the value 0.5 at B=0. The change of the critical exponent caused by the applied magnetic fields supports a picture in which μ varies depending on the universality class to which the system belongs. The phase diagram has been determined in magnetic fields for the 70Ge:Ga system.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Lee, P.A. and Ramakrishnan, T.V. (1985) Disordered electronic systems, Rev. Mod. Phys. 57, 287–337.

    Article  CAS  Google Scholar 

  2. Belitz, D. and Kirkpatrick, T.R. (1994) The Anderson-Mott transition, Rev. Mod. Phys. 66, 261–380.

    Article  CAS  Google Scholar 

  3. Wegner, F.J. (1976) Electrons in disordered systems. Scaling near the mobility edge, Z. Phys. B 25, 327–337; (1979) The mobility edge problem: continuous symmetry and a conjecture, ibid. 35, 207–210.

    Google Scholar 

  4. Rosenbaum, T.F. Milligan, R.F. Paalanen, M.A. Thomas, G.A. Bhatt, R.N. and Lin, W. (1983) Metal-insulator transition in a doped semiconductor, Phys. Rev. B 27, 7509–7523.

    Article  CAS  Google Scholar 

  5. Stupp, H. Hornung, M. Lakner, M. Madel, O. and Löhneysen, H.v. (1993) Possible solution of the conductivity critical exponent puzzle for the metal-insulator transition in heavily doped uncompensated semiconductors, Phys. Rev. Lett. 71, 2634–2637.

    Article  CAS  Google Scholar 

  6. Waffenschmidt, S. Pfleiderer, C. and Löhneysen, H.v. (1999) Critical behavior of the conductivity of Si:P at the metal-insulator transition under uniaxial stress, Phys. Rev. Lett. 83, 3005–3008.

    Article  CAS  Google Scholar 

  7. Rosenbaum, T.F. Thomas, G.A. and Paalanen, M.A. (1994) Critical behavior of Si:P at the metal-insulator transition, Phys. Rev. Lett. 72, 2121.

    Article  CAS  Google Scholar 

  8. Zulehner, W. (1989) Czochralski growth of silicon, in Harbeke, G. and Schulz, M.J. (eds.) Semiconductor Silicon: Material Science and Technology, Springer-Verlag, Berlin, pp. 2–23.

    Google Scholar 

  9. Haller, E.E. Palaio, N.P. Rodder, M. Hansen, W.L. and Kreysa, E. (1984) NTD germanium: a novel material for low temperature bolometers, in Larrabee, R.D. (ed.) Neutron Transmutation Doping of Semiconductor Materials, Plenum, New York, pp. 21–36.

    Google Scholar 

  10. Itoh, K.M. Haller, E.E. Beeman, J.W. Hansen, W.L. Emes, J. Reichertz, L.A. Kreysa, E. Shutt, T. Cummings, A. Stockwell, W. Sadoulet, B. Muto, J. Farmer, J.W. and Ozhogin, V.I. (1996) Hopping conduction and metal-insulator transition in isotopically enriched neutron-transmutation-doped 70Ge:Ga, Phys. Rev. Lett. 77, 4058–4061.

    Article  CAS  Google Scholar 

  11. Watanabe, M. Ootuka, Y. Itoh, K.M. and Haller, E.E. (1998) Electrical properties of isotopically enriched neutron-transmutation-doped 70Ge:Ga near the metal-insulator transition, Phys. Rev. B 58, 9851–9857.

    CAS  Google Scholar 

  12. Watanabe, M. Itoh, K.M. Ootuka, Y. and Haller, E.E. (2000) Localization length and impurity dielectric susceptibility in the critical regime of the metal-insulator transition in homogeneously doped p-type Ge, Phys. Rev. B 62, R2255–R2258.

    CAS  Google Scholar 

  13. Shklovskii, B.I. and Efros, A.L. (1984) Electronic Properties of Doped Semiconductors, Springer-Verlag, Berlin.

    Google Scholar 

  14. Ionov, A.N. Shlimak I.S. and Matveev, M.N. (1983) An experimental determination of the critical exponents at the metal-insulator transition, Solid State Commun. 47, 763–766.

    Article  CAS  Google Scholar 

  15. Kawabata, A. (1984) Renormalization group theory of metal-insulator transition in doped silicon, J. Phys. Soc. Jpn. 53, 318–323.

    CAS  Google Scholar 

  16. Hess, H.F. DeConde, K. Rosenbaum, T.F. and Thomas, G.A. (1982) Giant dielectric constants at the approach to the insulator-metal transition, Phys. Rev. B 25, 5578–5580.

    Article  CAS  Google Scholar 

  17. Katsumoto, S. (1990) Photo-induced metal-insulator transition in a semiconductor, in Kuchar, F, Heinrich, H. and Bauer, G. (eds.) Localization and Confinement of Electrons in Semiconductors, Springer-Verlag, Berlin, pp. 117–126.

    Google Scholar 

  18. Chayes, J.T. Chayes, L. Fisher, D.S. and Spencer, T. (1986) Finite-size scaling and correlation lengths for disordered systems, Phys. Rev. Lett. 57, 2999–3002.

    Article  Google Scholar 

  19. Kirkpatrick, T.R. and Belitz, D. (1993) Logarithmic corrections to scaling near the metal-insulator transition, Phys. Rev. Lett. 70, 974–977.

    Article  CAS  Google Scholar 

  20. Watanabe, M. Itoh, K.M. Ootuka, Y. and Haller, E.E. (1999) Metal-insulator transition of isotopically enriched neutron-transmutation-doped 70Ge:Ga in magnetic fields, Phys. Rev. B 62, 15817–15823.

    Google Scholar 

  21. Aľtshuler, B.L. and Aronov, A.G. (1983) Scaling theory of Anderson’s transition for interacting electrons, JETP Lett. 37, 410–413.

    Google Scholar 

  22. Ohtsuki, T. and Kawarabayashi, T. (1997) Anomalous diffusion at the Anderson transitions, J. Phys. Soc. Jpn. 66, 314–317.

    Article  CAS  Google Scholar 

  23. Abrahams, E. Anderson, P.W. Licciardello, D.C. and Ramakrishnan, T.V. (1979) Scaling theory of localization: absence of quantum diffusion in two dimensions, Phys. Rev. Lett. 42, 673–676.

    Article  Google Scholar 

  24. Bernreuther, W. and Wegner, F.J. (1986) Four-loop-order β function for two-dimensional nonlinear sigma models, Phys. Rev. Lett. 57, 1383–1385.

    Article  Google Scholar 

  25. Castner, T.G. Lee, N.K. Tan, H.S. Moberly, L. and Symko O. (1980) The low-frequency, low-temperature dielectric behavior of n-type germanium below the insulator-metal transition, J. Low Temp. Phys. 38, 447–473.

    Article  CAS  Google Scholar 

  26. Bhatt, R.N. and Rice, T.M. (1980) Clustering in the approach to the metal-insulator transition, Philos. Mag. B 42, 859–872.

    CAS  Google Scholar 

  27. Rentzsch, R. Ionov, A.N. Reich, Ch. Müller, M. Sandow, B. Fozooni, P. Lea, M.J. Ginodman, V. and Shlimak, I. (1998) The scaling behaviour of the metal-insulator transition of isotopically engineered neutron-transmutation doped germanium, Phys. Status Solidi B 205, 269–273.

    CAS  Google Scholar 

  28. Itoh, K.M. Watanabe, M. Ootuka, Y. and Haller, E.E. (1999) Scaling analysis of the low temperature conductivity in neutron-transmutation-doped 70Ge:Ga, Ann. Phys. (Leipzig) 8, 631–637.

    CAS  Google Scholar 

  29. Khmeľnitskii, D.E. and Larkin, A.I. (1981) Mobility edge shift in external magnetic field, Solid State Commun. 39, 1069–1070.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Kluwer Academic Publishers

About this chapter

Cite this chapter

Watanabe, M. (2002). Metal-Insulator Transition in Homogeneously Doped Germanium. In: Thorpe, M.F., Phillips, J.C. (eds) Phase Transitions and Self-Organization in Electronic and Molecular Networks. Fundamental Materials Research. Springer, Boston, MA. https://doi.org/10.1007/0-306-47113-2_18

Download citation

  • DOI: https://doi.org/10.1007/0-306-47113-2_18

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-306-46568-0

  • Online ISBN: 978-0-306-47113-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics