Skip to main content

Density Functional Theory of the Lattice Fermion Model

  • Chapter
Physics of Low Dimensional Systems

Abstract

Recent developments on the density functional theory (DFT) of lattice fermion models are reviewed. Formally exact, self-consistent equations are derived for the singleparticle density matrix γ ij that involve derivatives of the interaction-energy functional W[γ] and fractional occupations of natural orbitals η . The dependence of the correlation energy functional E c 12) — W - E HF on the nearest-neighbors (NN) density matrix γ12 is analyzed. A pseudo-universal scaling behavior of εC =E C /E HF as a function of g12 = (γ12 – γ 12) / (γ0 12 - γ 12) is revealed, where γ0 12 12) stands for the uncorrelated (strongly correlated) value of γ12. Based on exact dimer results and on scaling properties of E c12), a simple, explicit approximation to W12) is proposed for the Hubbard model. Ground-state energies and charge-excitation gaps of one- and two-dimensional lattices are obtained, in remarkable agreement with available exact results or accurate numerical simulations. The scope of DFT is thereby extended to the limit of strong electron correlations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. P. Hohenberg and W. Kohn, Phys. Rev. B 136, 864 (1964).

    Article  ADS  MathSciNet  Google Scholar 

  2. W. Kohn and L. J. Sham, Phys. Rev. A 140, 1133 (1965).

    Article  ADS  MathSciNet  Google Scholar 

  3. R. G. Parr and W. Yang, Density-Functional Theory of Atoms and Molecules (Oxford University, New York, 1989).

    Google Scholar 

  4. R. M. Dreizler and E. K. U. Gross, Density Functional Theory (Springer, Berlin, 1990).

    Book  MATH  Google Scholar 

  5. U. von Barth and L. Hedin, J. Phys. C: Solid State Phys. 5, 1629 (1972).

    Article  ADS  Google Scholar 

  6. D. C. Langreth and M. J. Mehl, Phys. Rev. B 28, 1809 (1983)

    Article  ADS  Google Scholar 

  7. A. D. Becke, Phys. Rev. A 38, 3098 (1988)

    Article  ADS  Google Scholar 

  8. J. P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996) and references therein.

    Article  ADS  Google Scholar 

  9. W. E. Picket, Rev. Mod. Phys. 61, 433 (1989)

    Article  ADS  Google Scholar 

  10. O. K. Andersen, H. L. Skriver, H. Nohl, and B. Johansson, Pure Appl. Chem. 52, 93 (1979)

    Google Scholar 

  11. K. Tekakura, A. R. Williams, T. Oguchi, and J. Kübler, Phys. Rev. Lett. 52, 1830 (1984).

    Article  ADS  Google Scholar 

  12. R. Pariser and R. G. Parr, J. Chem. Phys. 21, 466 (1953)

    Article  ADS  Google Scholar 

  13. R. Pariser and R. G. Parr, J. Chem. Phys. 21 767 (1953)

    Article  ADS  Google Scholar 

  14. J. A. Pople, Trans. Faraday Soc. 49, 1375 (1953).

    Article  Google Scholar 

  15. P. W. Anderson, Phys. Rev. 124, 41 (1961).

    Article  ADS  MathSciNet  Google Scholar 

  16. J. Hubbard, Proc. R. Soc. London, Ser. A 276, 238 (1963)

    Article  ADS  Google Scholar 

  17. J. Hubbard, Proc. R. Soc. London, Ser. A 281, 401 (1964)

    Article  ADS  Google Scholar 

  18. J. Kanamori, Prog. Theo. Phys. 30, 275 (1963)

    Article  ADS  MATH  Google Scholar 

  19. M. C. Gutzwiller, Phys. Rev. Lett. 10, 159 (1963).

    Article  ADS  Google Scholar 

  20. See, for instance, P. Fulde, Electron Correlations in Molecules and Solids (Springer, Berlin, 1991).

    Book  Google Scholar 

  21. O. Gunnarsson and K. Schönhammer, Phys. Rev. Lett. 56, 1968 (1986)

    Article  ADS  Google Scholar 

  22. K. Schönhammer and O. Gunnarsson, Phys. Rev. B 37, 3128 (1988)

    Article  ADS  Google Scholar 

  23. A. Schindlmayr and R. W. Godby, Phys. Rev. B 51, 10427 (1995).

    Article  ADS  Google Scholar 

  24. K. Schönhammer, O. Gunnarsson, and R. M. Noack, Phys. Rev. B 52, 2504 (1995).

    Article  ADS  Google Scholar 

  25. T. L. Gilbert, Phys. Rev. B 12, 2111 (1975).

    Article  ADS  Google Scholar 

  26. R. A. Donnelly and R. G. Parr, J. Chem. Phys. 69, 4431 (1978)

    Article  ADS  Google Scholar 

  27. R. A. Donnell, J. Chem. Phys. 71, 28744 (1979). See also, Ref. 3, p. 213, and references therein.

    Google Scholar 

  28. S. M. Valone, J. Chem. Phys. 73, 1344

    Google Scholar 

  29. S. M. Valone, J. Chem. Phys. 4653 (1980).

    Google Scholar 

  30. M. Levy, Proc. Natl. Acad. Sci. U.S.A. 76, 6062 (1979).

    Article  ADS  Google Scholar 

  31. R. López-Sandoval and G. M. Pastor, Phys. Rev. B 61, 1764 (2000)

    Article  ADS  Google Scholar 

  32. A single-particle density matrix ɤij is said to be pure-state N-representable if an TV-particle state |∑) exists, such that ɤij = ψ | ĉ†σ†i† σj† |. for all i and j.

    Google Scholar 

  33. C. Lanczos, J. Res. Nat. Bur. Stand. 45, 255 (1950)

    Article  MathSciNet  Google Scholar 

  34. B. N. Parlett, The Symmetric Eigenvalue Problem (Prentice-Hall, Engelwood Cliffs, NJ, 1980)

    MATH  Google Scholar 

  35. J. K. Collum and R. A. Willoughby, Lanczos Algorithms for Large Symmetric Eigenvalue Computations (Birkhauser, Boston, 1985), Vol. I.

    Google Scholar 

  36. L. H. Lieb and F. Y. Wu, Phys. Rev. Lett. 20, 1445 (1968).

    Article  ADS  Google Scholar 

  37. H. Shiba, Phys. Rev. B 6, 930 (1972).

    Article  ADS  Google Scholar 

  38. In the presence of degeneracies in the single-particle spectrum of finite systems one may find that the minimum of W[ɤij] does not correspond to a single Slater determinant, and that W(ɤ12 -> ɤ012) < EHf. Such a behavior is observed, for example, in rings with Na = Ne = Am. This is a finite-size effect which decreases with increasing Na.

    Google Scholar 

  39. In the nonmagnetic case the Hartree-Fock energy of the Hubbard model is EKF/Na = (U/4)(Ne/Na)2 for Ne even and EHF/Na = (U/4)(Ne/Na)2[1 -(1/Ne)2] for Ne odd. Notice that in this model the difference between EH. and the Hartree energy EH/Na = (U/2)(Ne/Na)2 is only the self interaction.

    Google Scholar 

  40. J. E. Hirsch, Phys. Rev. B 31, 4403 (1985).

    Article  ADS  Google Scholar 

  41. R. López-Sandoval and G. M. Pastor, to be published.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Kluwer Academic / Plenum Publishers, New York

About this chapter

Cite this chapter

Lopez-Sandoval, R., Pastor, G.M. (2001). Density Functional Theory of the Lattice Fermion Model. In: Morán-López, J.L. (eds) Physics of Low Dimensional Systems. Springer, Boston, MA. https://doi.org/10.1007/0-306-47111-6_41

Download citation

  • DOI: https://doi.org/10.1007/0-306-47111-6_41

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4757-0571-3

  • Online ISBN: 978-0-306-47111-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics