Skip to main content

Summary

Our studies for the identification of the natural calcium binding sites with both classic and pseudo EF-hand motifs in three EF-hand proteins have shown that natural calcium binding sites can be accurately relocated with Dezymer using a set of geometric descriptions of an ideal pentagonal bipyramid. The success of each constructed site can be ranked by the relative U(p) values. The searched native-like sites in three EF-hand proteins have the smallest deviation from the target geometry. Our work indicates that a useful method for searching calcium-binding sites in proteins has been established. It is possible to use established parameters to design novel calcium binding proteins.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aramini, J.M., Drakenberg, T., Hiraoki, T., Ke, Y., Nitta, K. & Vogel, H.J., 1992, Calcium-43 NMR studies of calcium-binding lysozymes and alpha-lactalbumins. Biochemistry. 3 1:6761–8

    Google Scholar 

  • Babu, Y.S., Bugg, C.E., & Cook W.J. 1988, Structure of calmodulin refined at 2.2 angstroms resolution, J. Mol. Biol. 204: 191.

    Article  CAS  Google Scholar 

  • Bryson J.W., Betz, S.F., Lu, H.S., Suich, D.J., Zhou, H.X, O’Neil KT & DeGrado W.F., 1995, Protein design: a hierchic approach. Science. 270:935–41.

    CAS  Google Scholar 

  • Clarke, N.D. & Yuan, S.M., 1995. Metal search: a computer program that helps design tetrahedral metalbinding sites. Proteins 23(2):256–63.

    Article  CAS  Google Scholar 

  • Da Silva, J.J.R.F. & Williams, R.J.P., 1991, The biological chemistry of the elements: The inorganic chemistry of life.

    Google Scholar 

  • Falke, J.J., Drake, S.K., Hazard, A.L., & Peersen, O.B. 1994. Molecular tuning of ion binding to calcium signaling proteins. Q Rev Biophys. 27:219–90.

    CAS  Google Scholar 

  • Finn, B.E., Evenas, J., Drakenberg, T., Waltho, J.P., Thulin, E., & Forsen, S. 1995. Calcium-induced structural changes and domain autonomy in calmodulin. Nat. Struct. Biol. 2:777–83.

    Article  CAS  Google Scholar 

  • Glusker, J.P. 1991. Structural aspects of metal liganding to functional groups in proteins. Adv Protein Chem, 42:1–76.

    CAS  Google Scholar 

  • Hellinga, H.W. 1998, The construction of metal centers in proteins by rational design. Fold Des 3:R1–8

    Article  CAS  Google Scholar 

  • Hellinga, H.W. & Richards, F.M. 1991. Construction of new ligand binding sites in proteins of known structure I. Comuter-aided modeling of sites with pre-defmed geometry. J. Mol. Biol. 222:763–785.

    CAS  Google Scholar 

  • Kawasaki, H. & Kretsinger, R.H., 1995, Calcium-binding proteins 1: EF-hands. Protein Profile, 2(4):297–490.

    CAS  Google Scholar 

  • Klemba, M., Gardner, K.H., Marino, S., Clarke, N.D. & Regan, L., 1995, Novel metal-binding proteins by design. Nat Struct Biol., 2(5):368–73.

    Article  CAS  Google Scholar 

  • Kretsinger, R.H., & Nockolds, C.E. 1973. Carp muscle calcium-binding protein. II. Structure determination and general description. J Biol Chem. 248:3313–26.

    CAS  Google Scholar 

  • Kuboniwa, H., Tjandra, N., Grzesiek, S., Ren, H., Klee, C.B. & Bax, A. 1995. Solution structure of calcium-free calmodulin. Nature structure biology, 2:768–776.

    CAS  Google Scholar 

  • Linse, S., & Forsen, S. 1995. Determinants that govern high-affmity calcium binding. Adv Second Messenger Phosphoprotein Res, 30:89–151.

    CAS  Google Scholar 

  • Lu Y. & Valentine J.S., 1997, Engineering metal-binding sites in proteins. Curr Opin Struct Biol. 7:495–500.

    Article  CAS  Google Scholar 

  • Nayal, M. & Di Cera, E., 1994, Predicting Ca(2+)-binding sites in proteins. Proc Natl Acad Sci USA, 91(2):817–21.

    CAS  Google Scholar 

  • Nelson, M.R. & Chazin, W.J., 1998, Structures of EF-hand Ca(2+)-binding proteins: diversity in the organization, packing and response to Ca2+ binding. Biometals 11(4):297–318.

    Article  CAS  Google Scholar 

  • Press, W.H., Flanery, B.P., Teukolsky, S.A. & Vetterling, W.T. 1988. Numerical Recipes in C. chap.10. Cambridge University Press. Cambridge.

    Google Scholar 

  • Regan, L. 1993, The design of metal-binding sites in proteins. Annu Rev Biophys Biomol Struct., 22:257–87.

    Article  CAS  Google Scholar 

  • Regan, L., 1995, Protein design: novel metal-binding sites. Trends Biochem Sci., 20(7):280–5.

    Article  CAS  Google Scholar 

  • Regan, L. & Clarke, N.D., 1990, A tetrahedral zinc(II)-binding site introduced into a designed protein. Biochemistry, 29(49): 10878–83.

    Article  CAS  Google Scholar 

  • Schafer, B.W., & Heizmann, C.W. 1996, The S100 family of EF-hand calcium-binding proteins: functions and pathology. Trends Biochem Sci. 21: 134–40.

    Article  CAS  Google Scholar 

  • Shi, W., Dong, J., Scott, R.A., Ksenzenko, M.Y. & Rosen, B.P., 1996, The role of arsenic-thiol interactions in metalloregulation of the ars operon. J Biol Chem, 271(16):9291–7.

    CAS  Google Scholar 

  • Strynadka, N.C. & James, M.N. 1989, “Crystal structures of the helix-loop-helix calcium-binding proteins”, Annu Rev Biochem. 58:951–98.

    Article  CAS  Google Scholar 

  • Svensson, L.A., Thulin, E., and Forsen, S. 1992, Proline cis-trans isomers in calbindinD9k observed by X-ray crystallography. J Mol. Biol., 223:601.

    Article  CAS  Google Scholar 

  • Swain, A. L., Kretsinger R. H. & Amma, E.L. 1989, Refinement of native (calcium) and cadmium-substituted carp parvalbumin using X-Ray crystallogaphic data at 1.6 angstroms resolution. J. Biol. Chem. 264:16620.

    CAS  Google Scholar 

  • Toma, S., Campagnoli, S., Margarit, I., Gianna, R., Grandi, G., Bolognesi, M., Filippis, i.D., & Fontana, A. 1991, Grafting of a calcium-binding loop of thermolysin to Bacillus Subtilis neutral protease. Biochemistry, 30: 97–106.

    Article  CAS  Google Scholar 

  • Yamashita, M.M., Wesson, L., Eisenman, G., Eisenberg, D., 1990, Where metal ions bind in proteins. Proc Natl Acad Sci US A, 87(15):5648–52.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Kluwer Academic Publishers

About this chapter

Cite this chapter

Yang, W., Lee, HW., Pu, M., Hellinga, H., Yang, J.J. (2002). Identifying and Designing of Calcium Binding Sites in Proteins by Computational Algorithm. In: Dadmun, M.D., Van Hook, W.A., Noid, D.W., Melnichenko, Y.B., Sumpter, B.G. (eds) Computational Studies, Nanotechnology, and Solution Thermodynamics of Polymer Systems. Springer, Boston, MA. https://doi.org/10.1007/0-306-47110-8_12

Download citation

  • DOI: https://doi.org/10.1007/0-306-47110-8_12

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-306-46549-9

  • Online ISBN: 978-0-306-47110-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics