Skip to main content
  • 308 Accesses

Conclusions

An atom laser based on RF-outcoupling can be operated in a coherently pulsed way by using two radio frequencies. Such a two-mode atom laser can be described by coupled Gross-Pitaevskii equations which are valid for very low temperatures (T≈0). We have derived analytic expressions for the output rate and the visibility of the pulsed atomic beam in the weak coupling regime. A comparison between the analytical and numerical results shows a good agreement. This proves our assumption that the outcoupling process may be seen as the coherent outcoupling of two independent atomic beams.

Though our model is only one-dimensional, we expect also a good agreement with the full 3D situation of experiment; the estimate for the value of the output rate might be only in the right order of magnitude16.

Summarizing, the manipulation of trapped Bose condensates with electromagnetic waves opens a wide new area for the field of coherent atom optics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Parkins, A. S., and Walls, D. F., 1998, Phys. Rep. 303: 1.

    Article  Google Scholar 

  2. Mewes, M.-O., et al., 1997, Phys. Rev. Lett. 78: 582.

    Article  Google Scholar 

  3. Bloch, I, Hänsch, T. W., and Esslinger, T., 1999, Phys. Rev. Lett. 82: 3008.

    Article  Google Scholar 

  4. Hagley, W. W., et al., 1999, Science 283: 1706.

    Article  Google Scholar 

  5. Ballagh, R. J., Bumett, K., and Scott, T. F., 1997, Phys. Rev. Lett. 78: 1607.

    Article  Google Scholar 

  6. Zhang, W, and Walls, D. F., 1998, Phys. Rev. A 57: 1248.

    Google Scholar 

  7. Zhang, W, and Walls, D. F., 1998, Phys. Rev. A 58: 4248.

    Google Scholar 

  8. Naraschewski, M, Schenzle A., and Wallis, H., 1997, Phys. Rev. A 56: 603.

    Article  Google Scholar 

  9. Steck, H., Naraschewski, M., and Wallis, R, 1998, Phys. Rev. Lett. 80: 1.

    Article  Google Scholar 

  10. Kneer, B., 1998, et al., Phys. Rev. A 58: 4841.

    Article  Google Scholar 

  11. Hutchinson, D. A. W., 1999, Phys. Rev. Lett. 82: 6.

    Article  Google Scholar 

  12. Japha, Y, Choi, S., Burnett, K., and Band, Y. B., 1999, Phys. Rev. Lett. 82: 1079.

    Article  Google Scholar 

  13. Graham R., and Walls, D. F., 1999, Phys. Rev. A 60: 1429.

    Article  Google Scholar 

  14. Band, Y B., Julienne, P. S., and Trippenbach, M., 1999, Phys. Rev. A 59: 3823.

    Article  Google Scholar 

  15. Edwards, M., 1999, et al., J. Phys. B: At. Mol. Opt. Phys. 32: 2935.

    Google Scholar 

  16. Schneider. J., and Schenzle, A., 1999, Appl. Phys. B 69: 353.

    Article  Google Scholar 

  17. Hope, J.J., 1997, Phys. Rev. A 55: 82531.

    Article  Google Scholar 

  18. Moy, G.M., Hope, J.J., and Savage, C.M., 1999, Phys. Rev. A 59: 667.

    Article  Google Scholar 

  19. Jack, M.W., Naraschewski, M., Collett, M.J., and Walls, D.F., 1999, Phys. Rev. A 59: 2962.

    Google Scholar 

  20. Hope, J., Moy, G.M., Collett, M.J., and Savage, C.M., 1999, condmat/9901073.

    Google Scholar 

  21. Hope, J., Moy, G.M., Collett, M.J., and Savage, C.M., 1999, condmat/9907023.

    Google Scholar 

  22. Breuer, HP., Faller, D., Kappler, B., and Petruccione, F., 1999, Phys. Rev. A 60: 3188.

    Article  Google Scholar 

  23. Moy, G.M., Hope, J.J., and Savage, C.M., 1997, Phys. Rev. A 55: 3631.

    Article  Google Scholar 

  24. Bloch, I., Hànsch, T.W., and Esslinger, T., 1999, Nature, accepted.

    Google Scholar 

  25. Schneider, J., and Schenzle, A., 1999, cond-mat/9910442.

    Google Scholar 

  26. Dalfovo, F., Giorgini, S., Pitaevskii, L.P., and Stringari, S., 1999, Rev. Mod. Phys. 71: 463.

    Article  Google Scholar 

  27. Flügge, S., 1974, Practical Quantum Mechanics. Springer, Berlin.

    Google Scholar 

  28. Handbook of Mathematical Functions, 1964, (M. Abramowitz, and I. A. Stegun, eds.), National Bureau of Standards, Washington, chapter 10.4.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Kluwer Academic Publishers

About this chapter

Cite this chapter

Schneider, J., Schenzle, A. (2002). Theory Of A Pulsed RF Atom Laser. In: Martellucci, S., Chester, A.N., Aspect, A., Inguscio, M. (eds) Bose-Einstein Condensates and Atom Lasers. Springer, Boston, MA. https://doi.org/10.1007/0-306-47103-5_10

Download citation

  • DOI: https://doi.org/10.1007/0-306-47103-5_10

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-306-46471-3

  • Online ISBN: 978-0-306-47103-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics