Skip to main content

The Conformational Flexibility of Domain III of Annexin V is Modulated by Calcium, pH and Binding to Membrane/Water Interfaces

  • Chapter
  • 601 Accesses

Part of the book series: Topics in Fluorescence Spectroscopy ((TIFS,volume 6))

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Meers, P. In Annexins: Molecular Structure to Cellular Function, B. A. Seaton, ed. Chapman and Hall, New York, 1996.

    Google Scholar 

  2. Gerke, V. and Moss, S. E. Annexins and membrane dynamics. Biochim. Biophys. Acta 1997; 135; 129–154.

    Google Scholar 

  3. Raynal, P. and Pollard, H. B. Annexins: the problem of assessing the biological role for a gene family of multifunctional calcium-and phospholipid-binding proteins. Biochim. Biophys. Acta 1994; 1197; 63–93.

    CAS  Google Scholar 

  4. Huber, R., Römisch, J. and Paques, E. P. The crystal and molecular structure of human annexin V, an anticoagulant protein that binds to calcium and membranes. EMBO J. 1990; 9; 3867–3874.

    CAS  Google Scholar 

  5. Huber, R., Schneider, M., Mayr, I., Römisch, J. and Paques, E. P. The calcium binding sites in human annexin V by crystal structure analysis at 2.0 A resolution. Implications for membrane binding and calcium channel activity. FEBS Lett. 1990; 275; 15–21.

    Article  CAS  Google Scholar 

  6. Huber, R., Berendes, R., Burger, A., Schneider, M., Karshikov, A., Luecke, H., Romisch, J. and Paques, E. P. Crystal and molecular structure of human annexin V after refinement. Implications for structure, membrane binding and ion channel formation of the annexin family of proteins. J. Mol. Biol. 1992; 223; 683–704.

    Article  CAS  Google Scholar 

  7. Lewit-Bentley, A., Morera, S., Huber, R. and Bodo, R. The effect of metal binding on the structure of annexin V and implications for membrane binding. Eur. J. Biochem. 1992; 210; 73–77.

    Article  CAS  Google Scholar 

  8. Concha, N. O., Head, J. F., Kaetzel, M. A., Dedman, J. R. and Seaton, B. A. Rat annexin V crystal structure: Ca(2+)-induced conformational changes. Science 1993; 261; 1321–1324.

    CAS  ISI  Google Scholar 

  9. Sopkova, J., Renouard, M. and Lewit-Bentley, A. The crystal structure of a new high-calcium form of annexin V. J. Mol. Biol. 1993; 234; 816–825.

    Article  CAS  Google Scholar 

  10. Lewit-Bentley, A., Bentley, G. A., Favier, B., LĽHermite, G. and Renouard, M. The interaction of metal ions with annexin V: a crystallographic study. FEBS Lett. 1994; 345; 3842.

    Article  Google Scholar 

  11. Swairjo, M. A., Concha, N. O., Kaetzel, M. A., Dedman, J. R. and Seaton, B. A. Ca(2+)-bridging mechanism and phospholipid head group recognition in the membrane-binding protein annexin V. Nature Struct. Biol. 1995; 2; 968–974.

    Article  CAS  Google Scholar 

  12. Weng, X., Luecke, H., Song, I. S., Kang, D. S., Kim, S. H. and Huber, R. Crystal structure of human annexin I at 2.5 A resolution. Protein Sci. 1993; 2; 448–458.

    CAS  Google Scholar 

  13. Luecke, H., Chang, B. T., Maillard, W. S., Schlaepfer, D. D. and Haigler, H. T. Crystal structure of the annexin XII hexamer and implications for bilayer insertion. Nature 1995; 378:512–5115.

    Article  CAS  ISI  Google Scholar 

  14. Favier-Perron, B., Lewit-Bentley, A. and Russo-Marie, F. The high-resolution crystal structure of human annexin III shows subtle differences with annexin V. Biochemistry 1996;35; 1740–1744.

    Article  CAS  Google Scholar 

  15. Burger, A., Berendes, R., Liemann, S., Benz, J., Hofmann, A., Göttig, P., Huber, R., Gerke, V., Thiel, C., Römisch, J. and Weber, J. The crystal structure and ion channel activity of human annexin II, a peripheral membrane protein. J. Mol. Biol. 1996; 257; 839–847.

    Article  CAS  Google Scholar 

  16. Benz, J., Bergner, A., Hofmann, A., Demange, P., Göttig, P., Liemann, S., Huber, R. and Voges, D. The structure of recombinant human annexin VI in crystals and membrane-bound. J. Mol. Biol. 1996; 260; 638–643.

    Article  CAS  Google Scholar 

  17. Kawasaki, H., Avilasakar, A., Creutz, C. E. and Kretzinger, R. H. The crystal structure of annexin VI indicates relative rotation of the two lobes upon membrane binding. Biochim. Biophys. Acta 1996; 1313; 277–282.

    Google Scholar 

  18. Zanotti, G., Malpeli, G., Gliubich, F., Folli, C., Stoppini, M., Olivi, L., Savoia, A. and Berni, R. Structure of the trigonal crystal form of bovine annexin IV Biochem. J. 1998

    Google Scholar 

  19. Brisson, A., Mosser, G. and Huber, R. Structure of soluble and membrane-bound human annexin V. J. Mol. Biol. 1991; 220; 199–203.

    Article  CAS  Google Scholar 

  20. Pigault, C., Follenius-Wund, A., Schmutz, M., Freyssinet, J.-M. and Brisson, A. Formation of two-dimensional arrays of annexin V on phosphatidylserine-containing liposomes. J. Mol. Biol. 1994; 236; 199–208.

    Article  CAS  Google Scholar 

  21. Voges, D., Berendes, R., Burger, A., Demange, P., Baumeister, W. and Huber, R. Three-dimensional structure of membrane-bound annexin V. A correlative electron microscopy-X-ray crystallography study. J. Mol. Biol. 1994; 238; 199–213.

    Article  CAS  Google Scholar 

  22. Kretsinger, R. H. Classification and evolution of EF-hand proteins. Biometals. 1998; 11; 277–295.

    ISI  Google Scholar 

  23. Dijkstra, B. W., Renetseder, R., Kalk, K. H., Hol, W. G. J. and Drenth, J. Structure of porcine pancreatic phospholipase A2 at 2.6 A resolution and comparison with bovine phospholipase A2. J. Mol. Biol. 1983; 168; 163–179.

    CAS  Google Scholar 

  24. Berendes, R., Voges, D., Demange, P., Huber, R. and Burger, A. Structure-function analysis of the ion channel selectivity filter in human annexin V. Science 1993;262; 427–430.

    CAS  ISI  Google Scholar 

  25. Sopkova, J., Gallay, J., Vincent, M., Pancoska, P. and Lewit-Bentley, A. The dynamic behavior of annexin V as a function of calcium ion binding: a circular dichroism, UV absorption, and steady-state and time-resolved fluorescence study. Biochemistry 1994; 33; 490–4499.

    Article  Google Scholar 

  26. Meers, P. Location of tryptophans in membrane-bound annexins. Biochemistry 1990; 29; 3325–3330.

    Article  CAS  ISI  Google Scholar 

  27. Meers, P., Bentz, J., Alford, D., Nir, S., Paphadjopoulos, D. and Hong, K. Synexin enhances the aggregation rate but not the fusion rate of liposomes. Biochemistry 1988; 27;4430–4439.

    CAS  ISI  Google Scholar 

  28. Meers, P. and Mealy, T.R. Relationship between annexin V tryptophan exposure, calcium, and phospholipid binding. Biochemistry 1993; 32; 5411–5418.

    CAS  ISI  Google Scholar 

  29. Meers, P. and Mealy, T. R. Calcium-dependent annexin V binding to phospholipids: stoichiometry, specificity, and the role of negative charge. Biochemistry 1993; 32; 11711–11721.

    CAS  ISI  Google Scholar 

  30. Meers, P. and Mealy, T. R. Phospholipid determinants for annexin V binding sites and the role of tryptophan 187. Biochemistry 1994; 33; 5829–5837.

    Article  CAS  ISI  Google Scholar 

  31. Luisi, P. L. and Magid, L. J. Solubilization of enzymes and nucleic acids in hydrocarbon micellar solutions. Crit. Rev. Biochem. 1986; 20; 409–474.

    CAS  Google Scholar 

  32. Nicot, C. and Waks, M. Proteins as invited guests of reverse micelles: conformational effects, significance, applications. Biotechnol. Genet. Eng. Rev. 1996; 13; 267–314.

    CAS  Google Scholar 

  33. Maurer-Fogy, I., Reutelingsperger, C. P. M., Peiters, J., Bodo, G., Stratowa, C. and Hauptman, R. Cloning and expression of cDNA for human vascular anticoagulant, a Ca2+-dependent phospholipid-binding protein. Eur J. Biochem. 1988; 174; 585–592.

    Article  CAS  Google Scholar 

  34. Gallay, J., Vincent, M., Nicot, C. and Waks, M. Conformational aspects and rotational dynamics of synthetic adrenocorticotropin-(1–24) and glucagon in reverse micelles. Biochemistry 1987; 26; 5738–5747.

    Google Scholar 

  35. Rouvière, N., Vincent, M., Craescu, C. T. and Gallay, J. Immunosuppressor binding to the immunophilin FKBP59 affects the local structural dynamics of a surface beta-strand: a time-resolved fluorescence study. Biochemistry 1997; 36; 7339–7352.

    Google Scholar 

  36. Vincent, M., Gallay, J. and Demchenko, A. P. Solvent relaxation around the excited state of indole: analysis of fluorescence lifetime distribution and time-dependent spectral shift. J. Phys. Chem. 1995; 99; 14931–14941.

    CAS  Google Scholar 

  37. Livesey, A. K., Licinio, P. and Delaye, M. Maximum entropy analysis of dynamic parameters via the Laplace transform J. Chem. Phys. 1986; 84; 5102–5107.

    Article  CAS  Google Scholar 

  38. Livesey, A. K. and Brochon, J. C. Analyzing the distribution of decay constants in pulse-fluorimetry using the maximum entropy method. Biophys. J. 1987; 52; 693–706.

    CAS  Google Scholar 

  39. Brochon, J.-C. Maximum entropy method of data analysis in time-resolved spectroscopy. Methods in Enzymol. 1994; 240; 262–311.

    CAS  Google Scholar 

  40. Vincent, M., Brochon, J.-C., M’rola, F., Jordi, W. and Gallay, J. Nanosecond dynamics of horse heart apocytochrome c in aqueous solution as studied by time-resolved fluorescence of the single tryptophan residue (Trp-59). Biochemistry 1988; 27; 8752–8761.

    CAS  ISI  Google Scholar 

  41. Mérola, F., Rigler, R., Holmgren, A. and Brochon, J.-C. Picosecond tryptophan fluorescence of thioredoxin: evidence for discrete species in slow exchange. Biochemistry 1989; 28; 3393–3398.

    Google Scholar 

  42. Gentin, M., Vincent, M., Brochon, J. C., Livesey, A. K., Cittanova, N. and Gallay, J. Time-resolved fluorescence of the single tryptophan residue in rat alpha-fetoprotein and rat serum albumin: analysis by the maximum-entropy method. Biochemistry 1990; 29; 10405–10412.

    Article  CAS  ISI  Google Scholar 

  43. Kuipers, O. P., Vincent, M., Brochon, J.-C., Verheij, H. M., de Haas, G. H. and Gallay, J. Insight into the conformational dynamics of specific regions of porcine pancreatic phospholipase A2 from a time-resolved fluorescence study of a genetically inserted single tryptophan residue. Biochemistry 1991; 30; 8771–8785.

    Article  CAS  ISI  Google Scholar 

  44. Vincent, M., Li de la Sierra, I. M., Berberan-Santos, M. N., Diaz, A., Diaz, M., Padron, G. and Gallay, J. Time-resolved fluorescence study of human recombinant interferon alpha 2. Association state of the protein, spatial proximity of the two tryptophan residues. Eur. J. Biochem. 1992; 210; 953–961.

    Article  CAS  Google Scholar 

  45. Gallay, J., Vincent, M., Li de la Sierra, I. M., Alvarez, J., Ubieta, R., Madrazo, J. and Padrón, G. Protein flexibility and aggregation state of human epidermal growth factor. A time-resolved fluorescence study of the native protein and engineered single-tryptophan mutants. Eur. J. Biochem. 1993; 211; 213–219.

    Article  CAS  Google Scholar 

  46. Bouhss, A., Vincent, M., Munier, H., Gilles, A.-M., Takahashi, M., Bárzu, O., Danchin, A. and Gallay, J. Conformational transitions within the calmodulin-binding site of Bordetella pertussis adenylate cyclase studied by time-resolved fluorescence of Trp242 and circular dichroism. Eur. J. Biochem. 1996; 237; 619–628.

    Article  CAS  Google Scholar 

  47. Jaynes, E. T. Papers on Probability Statistics and Statistical Physics (Rosenkrantz, R. D., Ed.) Reidel, Dordrecht, The Netherlands. 1983.

    Google Scholar 

  48. Livesey, A. K. and Skilling, J. Maximum entropy theory. Acta Crystallogr., Sect. A; Found. Crystallogr 1985; A41; 113–122.

    CAS  Google Scholar 

  49. Wahl, Ph. Analysis of fluorescence anisotropy decay by a least square method. Biophys. Chem. 1979; 10; 91–104.

    Article  CAS  Google Scholar 

  50. Vincent, M. and Gallay, J. The interactions of horse heart apocytochrome c with phospholipid vesicles and surfactant micelles: time-resolved fluorescence study of the single tryptophan residue (Trp-59). Eur. J. Biophys. 1991; 20; 183–191.

    CAS  Google Scholar 

  51. Blandin, P., Mérola, F., Brochon, J.-C., Trémeau, O. and Menez, A. Dynamics of the active loop of snake toxins as probed by time-resolved polarized tryptophan fluorescence. Biochemistry 1994; 33; 2610–2619.

    Article  CAS  ISI  Google Scholar 

  52. Ichiye, T. and Karplus, M. Fluorescence depolarization of tryptophan residues in proteins: a molecular dynamics study. Biochemistry 1983; 22; 2884–2893.

    Article  CAS  ISI  Google Scholar 

  53. Levy, R. M. and Szabo, A. J. Amer. Chem. Soc. 1982; 104; 2073–2075.

    CAS  Google Scholar 

  54. Kinosita, K. Jr, Kawato, S. and Ikegami, A. On the wobbling-in-cone analysis of fluorescence anisotropy decay. Biophys. J. 1977; 20; 289–305.

    CAS  Google Scholar 

  55. Malinowski, E. R. in Factor Analysis in Chemistry, John Willey and Sons, Second Edition, New York, 1991, p. 109.

    Google Scholar 

  56. Striekland, E. H. Crit. Rev. in Biochem. and Molec. Biol. 1974; 2; 113.

    Google Scholar 

  57. Kraulis, P.J. MOLSCRIPT a program to produce both detailed and schematic plots of protein structures. Appl. Crystallogr. 1991; 24; 946–950.

    Article  Google Scholar 

  58. Sopkova, J., Vincent, M., Takahashi, M., Lewit-Bentley, A. and Gallay, J. Conformational flexibility of domain III of annexin V studied by fluorescence of tryptophan 187 and circular dichroism: the effect of pH. Biochemistry 1998; 37; 11962–11970.

    Article  CAS  ISI  Google Scholar 

  59. Chen, Y., Liu, B., Hong-Tao, Y. and Barkley, M. D. The Peptide Bond Quenches Indole Fluorescence. J. Am. Chem. Soc. 1996; 118; 9271–9278.

    CAS  Google Scholar 

  60. Chen, Y. and Barkley, M. D. Toward understanding tryptophan fluorescence in proteins. Biochemistry 1998; 37; 9976–9982.

    CAS  ISI  Google Scholar 

  61. Sopkova, J., Vincent, M., Takahashi, M., Lewit-Bentley, A. and Gallay, J. Conformational flexibility of domain III of annexin V at membrane/water interfaces. Biochemistry 1999; 38; 547–5458.

    Article  Google Scholar 

  62. Valeur, B. and Weber, G. Resolution of the fluorescence excitation spectrum of indole into the 1La and 1Lb excitation bands. Photochem. Photobiol. 1977; 25; 441–444

    CAS  Google Scholar 

  63. Eftink, M. in Topics in Fluorescence Spectroscopy vol. 2 Principles (J. R. Lakowicz, ed.) chap. 2, pp, 53–126, Plenum Press, New York London. 1991.

    Google Scholar 

  64. Johnson, D. A. and Yguerabide, J. Solute accessibility to N epsilon-fluorescein isothiocyanate-lysine-23 cobra alpha-toxin bound to the acetylcholine receptor. A consideration of the effect of rotational diffusion and orientation constraints on fluorescence quenching. Biophys. J. 1985; 48; 949–955.

    CAS  Google Scholar 

  65. Newton, C. Pangborn, W. Nir, S. Papahadjopoulos, D. Specificity of Ca2+ and Mg2+ binding to phosphatidylserine vesicles and resultant phase changes of bilayer membrane structure. Biochim Biophys Acta 1978; 506; 281–287.

    CAS  Google Scholar 

  66. El Seoud, O. A. (1984) in Reverse Micelles (P. L. Luisi and B. E. Straub, eds.), pp. 81–93, Plenum Press, New York and London.

    Google Scholar 

  67. Marzola, P. and Gratton, E. Hydration and protein dynamics: frequency domain fluorescence spectroscopy on proteins in reverse micelles. J. Phys. Chem. 1991; 95; 9488–9495.

    Article  CAS  Google Scholar 

  68. Visser, A. J. W. G. Time-resolved fluorescence on self-assembly membranes. Curr. Opin. Coll. and Interface Scie. 1997; 2; 27–36.

    CAS  Google Scholar 

  69. Wong, M., Thomas, J. K. and Grätzel, M. Fluorescence probing of inverted micelles. The state of solubilized water clusters in alkane/diisooctyl sulfosuccinate (Aerosol OT) solution. J. Am. Chem. Soc. 1976; 98; 2391–2397.

    CAS  Google Scholar 

  70. Keh, E. and Valeur, B. Investigation of water-containing inverted micelles by fluorescence polarization. Determination of size and internal fluidity. J. Coll. Interface Sci. 1981; 79; 465–478.

    CAS  Google Scholar 

  71. Meers, P. in Annexins: Molecular Structure to Cellular Function (B. A. Seaton, ed.) Chapman and Hall, New York. 1996.

    Google Scholar 

  72. Dijkstra, B. W., Kalk, K. H., Hol, W. G. J. and Drenth, J. Structure of bovine pancreatic phospholipase A2 at 1.7å resolution. J. Mol. Biol. 1981; 147; 97–123.

    Article  CAS  Google Scholar 

  73. Thunissen, M. M. G. M., Kalk, K. H., Drenth, J., Dijkstra, B. W., Kuipers, O. P., Dijkman, R., de Haas, G. H. and Verheij, H. M. X-ray structure of phospholipase A2 complexed with a substrate-derived inhibitor. Nature 1990; 374; 689–691.

    Google Scholar 

  74. Scott, D. L., Otwinowski, Z., Gelb, M. H. and Sigler, P. Crystal structure of bee-venom phospholipase A2 in a complex with a transition-state analogue. Science 1990; 250; 1563–1566.

    CAS  ISI  Google Scholar 

  75. Scott, D. L., Otwinowski, Z., Yuan, K., Gelb, M. H. and Sigler, P. Interfacial catalysis: the mechanism of phospholipase A2. Science 1990; 250; 1541–1546.

    CAS  ISI  Google Scholar 

  76. White, S. P., Scott, D. L., Otwinowski, Z., Gelb, M. H. and Sigler, P. Crystal structure of cobra-venom phospholipase A2 in a complex with a transition-state analogue. Science 1990; 250; 1560–1563.

    CAS  ISI  Google Scholar 

  77. Volwerk, J. J. and de Haas, G. H. in Molecular Biology of Lipid-Protein interactions (eds. Griffith, O. H. and Jost, P. C.) pp. 69–149, Wiley, New York. 1982.

    Google Scholar 

  78. van Dam-Mieras, M. C. E., Slotboom, A. J., Pieterson, W. A. and de Haas, G. H. The interaction of phospholipase A2 with micellar interfaces. The role of the N-terminal region. Biochemistry 1975; 14; 5387–5394.

    Google Scholar 

  79. Ludescher, R. D., Johnson, I. D., Volwerk, J. J., de Haas, G. H., Jost, P. and Hudson, B. Rotational dynamics of the single tryptophan of porcine pancreatic phospholipase A2, it szymogen, and an enzyme/micelle complex. A steady-state and time-resolved anisotropy study. Biochemitry 1988; 27; 6618–6628.

    CAS  Google Scholar 

  80. Ludescher, R. D., Volwerk, J. J., de Haas, G. H. and Hudson, B. Complex photophysics of the single tryptophan of porcine pancreatic phospholipase A2, its zymogen, and an enzyme/micelle complex. Biochemistry 1985; 24; 7240–7249.

    Article  CAS  ISI  Google Scholar 

  81. Jain, M. H. and Maliwal, B. P. Spectroscopic properties of the states of pig pancreatic phospholipase A2 at interfaces and their possible molecular origin. Biochemistry 1993; 32; 11838–11846.

    CAS  ISI  Google Scholar 

  82. Vincent, M., Deveer, A.-M., de Haas, G. H., Verheij, H. M. and Gallay, J. Stereospeci-ficity of the interaction of porcine pancreatic phospholipase A2 with micellar and monomeric inhibitors. A time-resolved fluorescence study of the tryptophan residue. Eur. J. Biochem. 1993; 215; 531–539.

    Article  CAS  Google Scholar 

  83. van den Berg, B., Tessari, M., Boelens, R., Dijkman, R., de Haas, G. H., Kaptein, R. and Verheij, H. M. NMR structures of phospholipase A2 reveal conformational changes during interfacial activation. Nature Struct. Biol. 1995; 2; 402–406.

    Google Scholar 

  84. Verger, R. and de Haas, G. H. Interfacial enzyle kinetics of lipolysis. Annu. Rev. Biophys. Bioeng. 1976; 5; 77–119.

    Article  CAS  Google Scholar 

  85. Deveer, A. M. T. J., den Ouden, A. T., Vincent, M., Gallay, J., Verger, R., Egmont, M. R., Verheij, H. M. and de Haas, G. H. Competitive inhibition of lipolytic enzymes. VIII: Inhibitor-induced aggregation of porcine pancreatic phospholipase A2. Biochim. Biophys. Acta 1992; 1126; 95–104.

    CAS  Google Scholar 

  86. Sopkova, J. PhD thesis, Universities of Prague and Orsay. 1994.

    Google Scholar 

  87. Follenius-Wund, A., Piémont, E, Freyssinet, J.-M., Gerard, D. and Pigault, C. Conformational adaptation of annexin V upon binding to liposomes: a time-resolved fluorescence study. Biochem. Biophys. Res. Comm. 1997; 234; 111–116.

    Article  CAS  Google Scholar 

  88. London, E. and Feigenson, G. W. Fluorescence quenching in model membranes. 1. Characterization of quenching caused by a spin-labeled phospholipid. Biochemistry 1981; 20; 1932–1938.

    CAS  ISI  Google Scholar 

  89. Chattopadhyay, A. and London, E. Parallax methodfor direct measurement of membrane penetration depth utilizing fluorescence quenching by spin-labeled phospholipids. Biochemistry 1987; 26; 39–45.

    Article  CAS  ISI  Google Scholar 

  90. Yeager, M. D. and Feigenson, G. W. Fluorescence quenching in model membranes: phospholipid acyl chain distributions around small fluorophores. Biochemistry 1990; 29; 4380–4392.

    Article  CAS  ISI  Google Scholar 

  91. Ladokhin, A. S. and Holloway, P. W. Fluorescence of membrane-bound tryptophan octyl ester: a model for studying intrinsic fluorescence of protein-membrane interactions. Biophys. J. 1995; 69; 506–517.

    CAS  Google Scholar 

  92. Ladokhin, A. S. Analysis of protein and peptide penetration into membranes by depth-dependent fluorescence quenching: theoretical considerations. Biophys. J. 1999; 76; 946–955.

    Article  CAS  Google Scholar 

  93. Tanford, C. and Reynolds, J. A. Characterization of membrane proteins in detergent solutions. Biochim. Biophys. Acta 1976; 457; 133–170.

    CAS  Google Scholar 

  94. Callis, P. R. and Burgess, B. K. Tryptophan Fluorescence Shifts in Proteins from Hybrid Simulations: An Electrostatic Approach. J. Phys. Chem. 1997; 101; 9429–9432.

    CAS  Google Scholar 

  95. Callis, P. R. 1La and 1Lb transitions of tryptophan: applications of theory and experimental observations to fluorescence of proteins. Methods in Enzymology 1997; 278; 113–150.

    Article  CAS  ISI  Google Scholar 

  96. Voges, K.-P., Jung, G. and Sawyer, W. H. Depth-dependent fluorescent quenching of a tryptophan residue located at defined positions on a rigid 21-peptide helix in liposomes. Biochim. Biophys. Acta 1987; 896; 64–76.

    CAS  Google Scholar 

  97. Cowgil, R. W. Fluorescence and protein structure X. Reappraisal of solvent and structural effect. Biochim. Biophys. Acta 1967; 133; 6–18.

    Google Scholar 

  98. Russell, E. C. and Cowgill, R. W. Fluorescence and protein structure. 13. Further effects of side-chain groups. Biochim. Biophys. Acta 1968; 154; 231–233.

    CAS  Google Scholar 

  99. Steiner, R. F. and Kirby, E. P. The interaction of the ground and excited states of indole derivatives with electron scavengers. J. Phys. Chem. 1969; 73; 4130–4135.

    Article  CAS  Google Scholar 

  100. Bushueva, T. L., Busel, E. P. and Burstein, E. A. The interaction of protein functional groups with indole chromophores III. Amine, amide and thiol groups. Stud. Biophys. 1975; 52; 41–52.

    CAS  Google Scholar 

  101. Bushueva, T. L., Busel, E. P., Bushueva, V. N. and Burstein, E. A. The interaction of protein functional groups with indole chromophore I. Imidazole group. Stud. Biophys. 1974; 44; 129–139.

    CAS  Google Scholar 

  102. Ricci, R. W. and Nesta, J. M. Inter-and intramolecular quenching of indole fluorescence by carbonyl compounds. J. Phys. Chem. 1976; 80; 974–980.

    Article  CAS  Google Scholar 

  103. Petrich, J. W., Chang, M. C., McDonald, D. M. and Fleming, G. R. On the origin of nonexponential fluorescence decay in tryptophan and its derivatives. J. Am. Chem. Soc. 1983; 105; 3824–3832.

    Article  CAS  Google Scholar 

  104. Shizuka, H., Scrizawa, M., Shimo, T., Saito, I. and Matsuura, T. Fluorescence-quenching mechanism of tryptophan. Remarkably efficient internal proton-induced quenching and charge-transfer quenching. J. Am. Chem. Soc. 1988; 110; 1930–1934.

    CAS  Google Scholar 

  105. Tilstra, L., Sattler, M. C., Cherry, W. R. and Barkley, M. D. Fluorescence of a rotationally constrained tryptophan derivative, 3-carboxy-1,2,3,4-tetrahydro-2-carboline. J. Am. Chem. Soc. 1990; 112; 554–563.

    Article  Google Scholar 

  106. Szabo, A. G. and Rayner, D. M. Fluorescence decay of tryptophan conformers in aqueous solution. J. Am. Chem. Soc. 1980; 102; 554–563.

    Article  CAS  Google Scholar 

  107. McMahon, L. P., Colucci, W. J., McLaughlin, M. L. and Barkley, M. D. Deuterium isotope effects in constriend tryptophan derivatives: implications for tryptophan photophysics. J. Am. Chem. Soc. 1992; 114; 8442–8448.

    Article  CAS  Google Scholar 

  108. Boens, N., Janssens, L. D., van Dommelen, L., de Schryver, F. C. and Gallay, J. Photophysics of tryptophan: global analysis of the fluorescence decay surface as a function of ph, temperature, quencher concentration, excitation and emission wavelengths, timing calibration and deuterium isotope effect. Time-Resolved Laser Spectroscopy in Biochemistry III, SPIE Proceedings. 1992; 140; 58–69.

    Google Scholar 

  109. Vos, R. and Engelborghs, Y. A fluorescence study of tryptophan-histidine interactions in the peptide anantin and in solution. Photochem. Photobiol. 1994; 60; 24–32.

    CAS  Google Scholar 

  110. Cordier-Ochsenbein, F. PhD thesis, University Paris-Sud. 1997.

    Google Scholar 

  111. Plager, D. A. and Nestuelen, G. L. Direct enthalpy measurements of the calcium-dependent interaction of annexins V and VI with phospholipid vesicles. Biochemistry 1994; 33; 13239–13249.

    CAS  ISI  Google Scholar 

  112. Campos, B., Mo, Y. D., Mealy, T. R., Swairjo, M. A., Balch, C., Head, J. F., Retzinger, G., Dedman, J. R. and Seaton, B. A. Mutational and crystallographic analyses of interfacial residues in annexin V suggest direct interactions with phospholipid membrane components. Biochemistry 1998; 37; 8004–8010.

    Article  CAS  ISI  Google Scholar 

  113. Saurel, O., Cezanne, L., Milon, A., Tocanne, J. F. and Demange, P. Influence of annexin V on the structure and dynamics of phosphatidylcholine/phosphatidylserine bilayers: a fluorescence and NMR study. Biochemistry 1998; 37; 1403–1410.

    Article  CAS  ISI  Google Scholar 

  114. Cezanne, L., Lopez, A., Loste, F., Parnaud, G., Saurel, O., Demange, P. and Tocanne, J. F. Organization and dynamics of the proteolipid complexes formed by annexin V and lipids in planar supported lipid bilayers. Biochemistry 1999; 38; 2779–2786.

    Article  CAS  ISI  Google Scholar 

  115. Beermann, Br. B., Hinz, H.-J., Hofmann, A. and Huber, R. Acid induced equilibrium unfolding of annexin V wild type shows two intermediate states. FEBS Lett. 1998; 423; 265–269.

    Article  Google Scholar 

  116. Reviakine, I., Bergma-Schutter, W. and Brisson, A. Growth of Protein 2-D Crystals on Supported Planar Lipid Bilayers Imaged in Situ by AFM. J. Struct. Biol. 1998; 121; 356–361.

    Article  CAS  Google Scholar 

  117. Concha, N. O., Head, J. F., Kaetzel, M. A., Dedman, J. R. and Seaton, B. A. Annexin V forms calcium-dependent trimeric units on phospholipid vesicles. FEBS Lett. 1992; 314; 159–162.

    Article  CAS  Google Scholar 

  118. Brisson, A. and Lewit-Bentley, A. in Annexins: Molecular Structure to Cellular Function (B. A. Seaton, ed.), chap. 4, pp. 43–52, Chapman and Hall, New York. 1996.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Kluwer Academic Publishers

About this chapter

Cite this chapter

Gallay, J., Sopková, J., Vincent, M. (2002). The Conformational Flexibility of Domain III of Annexin V is Modulated by Calcium, pH and Binding to Membrane/Water Interfaces. In: Lakowicz, J.R. (eds) Topics in Fluorescence Spectroscopy. Topics in Fluorescence Spectroscopy, vol 6. Springer, Boston, MA. https://doi.org/10.1007/0-306-47102-7_7

Download citation

  • DOI: https://doi.org/10.1007/0-306-47102-7_7

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-306-46451-5

  • Online ISBN: 978-0-306-47102-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics