Skip to main content

Optical Waveguide Refractometers

  • Chapter
Optical Sensors and Microsystems

Conclusions

In this chapter we have illustrated a new method for the determination of the refractive index of liquid samples, based on Cerenkov second harmonic generation from suitable planar waveguides. The method allows the determination of the refractive index in the near infrared by detection in the visible. Although the sensor proposed requires a nonlinear material, it can be fabricated by standard, rather simple techniques.

The same method can be exploited in an inverse way to obtain a full optical characterisation of second-order nonlinear waveguides, even if single-mode.

We have reported preliminary experimental results that demonstrate the reliability of the method described. Suitable waveguides will be designed for the refractometer proposed, with particular attention to sensitivity optimisation. Moreover, the possibility of full integration with a semiconductor laser will be considered. Indeed, waveguides, both linear and nonlinear, are likely to play a major role in sensor applications, and in particular in refractometry, especially in the prospect of fully integrated devices.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. K. Kuhler, E. L. Dereniak, and M. Buchanan, Measurement of the index of refraction of the plastic Phenoxy PKFE, Appl. Opt. 30:1711 (1991)

    Article  ADS  Google Scholar 

  2. E. Moreels, C. de Greef, and R. Finsy, Laser light refractometer, Appl. Opt. 23:3010 (1984)

    Article  ADS  Google Scholar 

  3. B. W. Grange, W. H. Stevenson, and R. Viskanta, Refractive index of liquid solutions at low temperatures: an accurate measurement, Appl. Opt. 15:858 (1976)

    Article  ADS  Google Scholar 

  4. S. Nemoto, Measurement of refractive index of liquid using laser beam displacement. Appl. Opt. 31:6690 (1992)

    Article  ADS  Google Scholar 

  5. F. Docchio, S. Corini, M. Perini, and R. S. Kasana, A simple and reliable system for measuring the refractive index of liquids using a position-sensitive detector, IEEE Trans. Instr. Meas. 44:68 (1995)

    Article  Google Scholar 

  6. B. Richerzhagen, Interferometer for measuring the absolute refractive index of liquid water as a function of temperature at 1.064 μm, Appl. Opt. 35:1650 (1996)

    Article  ADS  Google Scholar 

  7. W. Lu and W. M. Worek, Two-wavelength interferometric technique for measuring the refractive index of salt-water solutions, Appl. Opt. 32:3992 (1993)

    ADS  Google Scholar 

  8. H. El Kashef, G. E. Hassan, and I. El-Ghazaly, Mach-Zehnder optical system as a sensitive measuring instrument, Appl. Opt. 33:3540 (1994)

    Article  Google Scholar 

  9. F. A. Jenkins and H. E. White, Fundumentals of Optics, Mc Graw Hill Book Company, New York (1976).

    Google Scholar 

  10. J. M. St-Arnaud, J. Ge, J. Orbriot, T. K. Bose, and Ph. Marteau, An accurate method for refractive index measurements of liquids using two Michelson laser interferometers, Rev. Sci. Instrum 62:1411 (1991)

    Article  ADS  Google Scholar 

  11. T. Li and X. Tan, Stepwise interferometric method of measuring the refractive index of liquid samples, Appl. Opt. 32:2274 (1993)

    Article  ADS  Google Scholar 

  12. M. de Angelis, S. De Nicola, P. Ferraro, A. Finizioe, and G. Pierattini. A reflactive grating interferometer for measuring the refractive index of liquids, Pure Appl. Opt. 5:761 (1996)

    Article  ADS  Google Scholar 

  13. T. H. Barnes, K. Matsumoto, T. Eiju, K. Matsuda, and N. Ooyama, Grating interferometer with extremely high stability suitable for measuring small refractive index changes, Appl Opt. 30:745 (1991)

    Article  ADS  Google Scholar 

  14. S. Sainov and N. Duslkina, Simple laser microrefractometer, Appl. Opt. 29:1406 (1990)

    Article  ADS  Google Scholar 

  15. C. W. Chan and W. K. Lee, Measurement of a liquid refractive index by using high-order rainbows, J. Opt. Soc. Am. B 13:532 (1996)

    ADS  Google Scholar 

  16. S. Y. El-Zaiat and H. A. El-Hennawi. Applying multiple-beam Fizeau fringes for measuring the refractive indices of liquids, Meas. Sci. Technol. 7:1119 (1996)

    Article  ADS  Google Scholar 

  17. M. S. Meyer and G. L. Eesley, Optical fiber refractometer. Rev. Sci. Instrum. 58:2047 (1987)

    Article  ADS  Google Scholar 

  18. A. Suhadolnik, A. Babnik, and J. Mozina. Optical fiber reflection refractometer. Sens. Act. B 29:428 (1995)

    Article  Google Scholar 

  19. M. Archenault, H. Gagnaire, J. P. Goure, and N. Jaffrezic-Renault, Sens. Act. B 5:17.3 (1991)

    Google Scholar 

  20. T. Takeo and H. Hattori, Silica glass fiber photorefractometer, Appl. Opt. 31:44 (1992)

    Article  ADS  Google Scholar 

  21. C. Ronot-Trioli, A. Trouillet, C. Veillas, and H. Gagnaire, Monochromatic excitation of surface plasmon resonance in an optical fiber refractive index sensor, Sens. Act. A 54:389 (1996)

    Google Scholar 

  22. Y. Liu, P. Hering, and M. O. Scully, An integrated optical sensor for measuring glucose concentration, Appl. Phys. B 54:18 (1992)

    Article  ADS  Google Scholar 

  23. M. N. Weiss, R. Srivastava, H. Groger, P. Lo, and Shu-Fang Luo, A theoretical investigation of environmental monitoring using surface plasmon resonance waveguide sensors, Sens. Act. A 51:211 (1996)

    Article  Google Scholar 

  24. D. Clerc and W. Lukosz, Integrated optical output grating coupler as refractometer and (bio-)chemical sensor, Sens. Act. B 11:461 (1993)

    Article  Google Scholar 

  25. N. Hashizume, T. Kondo, T. Onda, N. Ogasawara. S. Umegaki, and R. Ito, Thoeretical analysis of Cerenkov-type optical second-harmonic generation in slab waveguides. IEEE J Quantum Electron. 28:1798 (1992)

    Article  ADS  Google Scholar 

  26. D. Marcuse, Theory of dielectrical optical waveguides. Academic Press, New York arid London (1974)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Kluwer Academic Publishers

About this chapter

Cite this chapter

Ramponi, R., Marangoni, M., Osellame, R. (2002). Optical Waveguide Refractometers. In: Martellucci, S., Chester, A.N., Mignani, A.G. (eds) Optical Sensors and Microsystems. Springer, Boston, MA. https://doi.org/10.1007/0-306-47099-3_4

Download citation

  • DOI: https://doi.org/10.1007/0-306-47099-3_4

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-306-46380-8

  • Online ISBN: 978-0-306-47099-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics